M ForTH

USERS MANUAL

by A. Richard Miller

For specific use with the MMSFORTH Disk System (V2.0 or V2.1)
on Radio Shack TRS-80 Model 1 or III or IBM Personal Computer

(requires 1 minidisk drive and 32K RAM)

MILLER MICROCOMPUTER
| - SERVICES

61 LAKE SHORE ROAD, NATICK, MASS. 01760
(617) 6563-6136

CREDITS:

Forth was conceived about 1970 by Charles Moore. The fundamental
and continuing work by him and by Elizabeth Rather (now with Forth,
Inc.) is valued immensely by all who appreciate Forth programming.

The principal author of the MMSFORTH System is Tom Dowling. Tom
has been building Forth systems since 1975 and has been perfecting
MMSFORTH since 1978. MMS first released MMSFORTH as Version 1.5 in
1979 and introduced minor revisions through Version 1.9 while applying it
to many commercial tasks,

Version 2.0, the first major revision of MMSFORTH, introduced the
79-STANDARD subset of Forth words and was released in June 1981, It is
the product of Tom Dowling, assisted by Diek and Jill Miller and John
Rible.

Thanks are due to the many of our two thousand prior users who
suggested new features and reported sharp edges., We particularly thank
the MMSFORTH Users Group of Eastern Massachusetts and the users
across the world who so effectively shake out our draft versions of
MMSFORTH.

Copyright (c¢) 1982 by Miller Microcomputer Services,

MMSFORTH, THE DATAHANDLER, FORTHWRITE, TRADESHOW, etc., are
trademarks of Miller Microcomputer Services.

Radio Shack and TRS-80 are trademarks of Tandy Corp.

IBM Personal Computer is a trademark of International Business Machines,
Inc,

Third edition, July 1982
9 8 : Printing

This book is regularly updated as a component of the MMSFORTH
System, Some chapters have been derived in part from "The microFORTH
PRIMER", through a cooperative agreement with Forth, Ine. Text copy
was produced with a TRS-80 Model III mierocomputer, a NEC Spinwriter
printer, and the FORTHWRITE wordprocessing system in MMSFORTH.

All rights reserved., No part of this book may be reproduced in any
form or by any means, electronic or mechanical, including photocopying,
recording, or by an information retrieval system, without permission in
writing from:

Miller Mierocomputer Services
61 Lake Shore Road, Natick MA 01760-2099
(617) 653-6136

MILLER MICROCOMPUTER
SERVICES

61 LAKE SHORE ROAD, NATICK, MASS. 01760
(617) 653-6136

July, 1982
TO PURCHASERS OF MMSFORTH:
Thank you for your order,

MMS is very serious about supporting MMSFORTH with major
applications programming and with information and upgrades as
opportunities arise, In order to provide these services, we need
your name and your agreement not to distribute copies of this
software to nonpurchasers. Do not fail to complete and return
the yellow copy of the MMSFORTH User License Agreement &
Registration Form, Upon its receipt we will send you the
missing Glossary sections and you will be eligible for upgrade
information, subseription to the MMSFORTH NEWSLETTER
($30.00 covers all issues from 1980 through 1982), ete.

We do not guarantee to answer all your questions about
MMSFORTH without charging consulting fees, But. we try to
support reasonable requests, to encourage knowledgeable
dealers, and to nourish a Newsletter which will share questions
and answers as surely as MMSFORTH users send us their ideas,
Above all, we urge you to provide us with good documentation
of bugs, fixes, and improvements, Together we can continue to
provide a remarkable microcomputer software environment!

Sincerely, .

Diek & Jill Miller/FORTHWRITE

Sign, then type or neatly print ALL requested information on the YELLOW copy of this form and
return within 14 days of purchase. It is your guarantee that MMS will honor you as a bona fide
user of MMSFORTH, and it will be your ticket to additional instructions and update mailings on the
MMSFORTH System,

=====—=— MMSFORTH SYSTEM USER LICENSE AGREEMENT & REGISTRATION FORM

This copy of the MMSFORTH System is licensed for use on a single computer (designated by its
Serial Number) with support to the Designated Person whose signature appears below. Copies may
be made for back-up purposes and modified versions may be generated for use on the same
computer. Modified versions also must display the MMS copyright and MMS serial number information
upon start-up, Under no circumstances shall this agreement be construed as permission to distribute
any original or modified version of MMSFORTH for loan, sale, trade, as a gift or otherwise, except
when ALL originals, copies and accessory MMSFORTH software are transferred to another computer
and/or Designated Person via a separately negotiated MMS License Transfer, MMS liability is limited
to the provision of a machine-readable version of MMSFORTH.

Development and marketing of commercial products are encouraged provided that the MMSFORTH
System is not included in whole or in part, except by separate sale or through a separate licensing
agreement., Contact MMS for such arrangements,

--=- I understand and agree to these conditions.,

Designated Person, Signature Date __/__/ ___

Last name First (in full)

Company
Address
City, State, Zip

Phone Number () May we give your name to other users (Y/N)?
Licensed Computer: Make Model Serial Number .
RAM Size ______K_ No. of Disk Drives

MMSFORTH System: Version
Bought from
Address
Where did you find MMS ad, or other reason for
Comments (Interests and applications, suggestions

tefurchased __/ /[

Serial Number (first screen)

User desired.):

EE T for

and mail to: ===mwommmmossoscocccccoosssc

MMSFORTH System Registration
MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road

Natick, MA 01760

UNITED STATES OF AMERICA

Table of Contents / Page i

TABLE OF CONTENTS

Tables, Listings & Figures

pie
oy

Preface P-1
Basic FORTH Operations 1-1
- Editing FORTH Blocks 2-1

Editing Commands 2-5

Editing Conventions 2-12
Copying, Loading and Printing 3-1
Data Declarations 4-1
Handling Text 5-1
Conditional Branches and Loops 6-1
Program Development 7-1

PAINT 7-3

SIMPLE SIMON -7
Advanced Program Development (CHECKBOOK) 8-1

APPENDICES *

Getting Started Al-1
Cassette Information (not included) A2-1
MMSFORTH System Demo Programs A3~-1
MMSFORTH System Utilities Ad-1

Translation from MMSFORTH V1.9 A4-10
MMSFORTH System Extensions A5-1
TROUBLESHOOTING in MMSFORTH Ab6-1

Error Messages A6-1

Software Bug Report A6-10
MMSFORTH Memory Map ** AT7-1
CATALOG Listing of MMSFORTH Wordnames ** A8-1
FORTH Glossary ** A0-1
ASSEMBLER ** A10-1
Keyboard Key Definitions ** All1-1
System Constants ** Al12-1
Forth Programming Rules Al3-1
Bibliography Al4-1

No Appendices are provided when a USERS MANUAL is sold with-
out the MMSFORTH System; refer to the FORTH-79 STANDARD
MANUAL and/or the specific manual for your other Forth system.

Appendices AT-Al2 are provided upon return of your properly com-
pleted MMSFORTH License Agreement,

Page ii / MMSFORTH USERS MANUAL

TABLES
1. Arithmetic Operators 1-14
2. Comparison Operators 1-15
3. Stack Manipulation Operators 1-16
4, Editing Commands 2-11
5. Editing Conventions 2-12
6. Memory Operators 4-8
7. MMSFORTH System Indexes Al-11
8. V1.9 to V2,0 Translation Tables A4-13
9. Double-Precision Arithmetic Operations A5-3
10, Keyboard Key Definitions All-1
11, System Constants ; Al12-1
12. Forth Programming Rules Al13-1

LISTINGS
1. STRINGS Example 5-3
2. PAINT 7-3
3. SIMPLE SIMON 7-8
4, CHECKBOOK 8-2

FIGURES
1. Software Bug Report form A6-10
2. MMSFORTH Memory Map AT-1
3. CATALOG Listing of MMSFORTH wordnames A8-2

Preface / P-1

PREFACE

LICENSING

Forth is a remarkable and different way to see and use a computer
system, and MMSFORTH is an original and professional version for the
Radio Shack TRS-80 Models I, III and the IBM Personal Computer. In
order to keep MMSFORTH powerful, well-supported and readily available
to new users, Miller Microcomputer Services has chosen to market the
standard versions of it inexpensively under single-computer licensing with
one~-person support. This means that you may copy and modify your singly
licensed and serialized MMSFORTH system for your own personal use (but
must maintain its front-screen copyright notice and serial number) and
others may use your system copies under your direct supervision -- you
keep the disks! -- on your one computer. However, YOU MAY NOT
DISTRIBUTE THE ORIGINAL OR COPIES OF YOUR MMSFORTH SYSTEM
TO OTHERS FOR MONEY OR OTHERWISE.

Organizations using MMSFORTH on more than one computer or with
more than one supported person must buy an individual copy for each
computer and/or supported user. Discount prices are available when at
least five copies are ordered at once. Alternatively, a single license may
be extended to all users within a single corporate site address, for a
$1,000 surcharge. Additional Corporate Site License Extensions (CSLE's)
cost $500 or less, and are required for additional sites or for extended
use of certain programs such as FORTHWRITE, GENERAL LEDGER, AND
TRADESHOW. (All prices are subject to change.)

In addition to personal and corporate site licensing of MMSFORTH
software, MMS offers several possible methods of broad distribution for
user-developed products in MMSFORTH. Most serious applications are
delivered with a complete MMSFORTH System, much as if they had been
built in some other language and disk operating system. You would have
your customer buy our part from MMS or a MMS dealer; you might choose
to become a MMSFORTH dealer yourself, keeping a dealer discount in
exchange for your overhead of stocking and support.

If your distributed application will not require user access to the
MMSFORTH wordset supplied by MMS (no editing, ete,) we can arrange
for distribution of a "stripped" version or run-time module. Typically, this
means the user can access your words but not ours, often with savings in
space and run-time speed. Pricing starts at $500 for 50 licenses ($10 per
run-time module), or for $5,000 you can produce unlimited copies of
appropriate programs built on one of our systems -- very inexpensive in
large runs,

Any unauthorized exception to these requirements is software piraey.
It discourages general support by good authors and publishers, it will
result in loss of your specific support from MMS, and will leave you

P-2 / MMSFORTH USERS MANUAL

subject to legal prosecution. MMS requests that you abide by these
requirements yourself, and that you impress others with the need for this
level of responsibility in dealings with other computer software products.
To confirm possible price changes or where questions exist, please
contact MMS for clarification.

Be sure to return your MMSFORTH Registration Form and License
Agreement to MMS promptly, answered legibly and completely, with your
full name (not just first initials!), signature, etec. to assure prompt return
of the additional Appendix sections of your MMSFORTH Users Manuals,

SUPPORT SERVICES

Licensed MMSFORTH users may call MMS Monday through Friday
between 9 a.m, and 9 p.m. Eastern U.S. Time for brief suggestions about
troubleshooting. Busy lines usually preclude extensive conversation except
for clients of our consulting services. STATE YOUR MMSFORTH VERSION
AND SERIAL NUMBER WHEN PLACING A CALL OR ORDER. MMS
answers mail on a time-available basis, Most complex questions are best
resolved -- or at least initiated -- by a two-way phone conversation.

MMSFORTH is the basis for the MMSFORTH System: a broad and well-
integrated system of available application and utility programs running in
MMSFORTH. These include THE DATAHANDLER, a UTILITIES Diskette, a
GAMES Diskette, the FORTHCOM ° communications program, the
FORTHWRITE word processor, a GENERAL LEDGER and others, Each is
individually documented on the source blocks and in accompanying
literature,

- MMS also supports its users with professional workshops and
consulting, with volunteer MMSFORTH User Groups across the world, and
with the MMSFORTH NEWSLETTER. Several issues of this periodical are
advanced with the MMSFORTH Glossary; subseribe to assure notification
of changes, fixes, and many useful and enjoyable program routines,
explanations, ete.

USER INPUT AND UPGRADES

MMS solicits your feedback to improve our produects and services. To
this end, we include a User Comment Form with each of our major
produets.

We invite our licensed users to share in our continuing development
efforts, Inexpensive rewrites of your original Forth and applications
programs to our latest versions are available, as are new manuals when
appropriate., Consult your MMSFORTH Newsletter for announcements in
this regard. Poorly packaged diskettes often arrive damaged at MMS. To
save our time and a $4.00 replacement fee, protect your disk from dust,

Preface / P-3

moisture, bending and pressure, as follows: place your diskette in its
protective envelope, then put both into a "sandwich baggie" and tape it
shut., Nest this between two wads of crumpled paper, ete,, inside a box
(never an envelope!) and seal it so it is rigid. Then mail it to MMS.

ABOUT MMSFORTH

If you haven't yet used Forth, be prepared for a considerable
difference and many surprises! Forth is a total computer software
environment, requiring no other operating system or language. Forth seems
to be all things to all people. Some of your early experiences will seem
confusing because of this multiplicity of riches, but you will come to
understand and appreciate the difference between Forth and your other
computer environments,

Depending on how you use it, your Forth can be a simple way to talk
to a computer in an English-like high-level language, or a very complex
combination of the three traditional levels of computer languages: machine
code, assembler, and high-level, A simple tool for the creation of new
instructions or even of new words to create new types of instructions in
the highest level ever available - the fourth level from which it takes its
name, A way to combine language and operating system, or to combine
the best features of interpreter and compiler,

Forth also is a way to speed up program development time (once you
learn its fundamentals), and the program's actual run time speed. (Expect
10 to 20 times speed-up over your interpreter BASIC, nearly assembly
language speed - with an assembler aboard in case you need faster!) A
way to write a program in a small amount of RAM, even smaller than
assembler programs in many cases. A flexible and powerful system suited
to the creation of business, games, or process control programs, or for
running a growing number of prepackaged Forth software applications., A
method for automatically organizing your programming effort, with as
little or as much built-in documentation as you choose, To many Forth
programmers, Forth also is a philosophy (and to some a religion). Prepare
yourself for an exciting new experience in a new type of computer
environment which will seem unbounded!

MMSFORTH is an original and unusually complete Forth system. Like
all other versions of Forth, it owes its basic concepts to the pioneering
work of Charles Moore, Elizabeth Rather, and others in the
radio-astronomy community, It is not figForth or any of the Forth
products of Forth, Inc.; however, MMS and these other Forth producers
have cooperated to develop T9-STANDARD FORTH, a subset of words
which is incorporated within MMSFORTH V2.0 and other contemporary
Forth systems,

P-4 / MMSFORTH USERS MANUAL

This book is primarily designed to introduce new users to the standard
MMSFORTH System Diskette, Custom MMSFORTH Systems are also
available for cassette, hard disk and other hardware combinations.

Although this MMSFORTH USERS MANUAL is written for novice Forth
programmers, we do assume a basic understanding of computer terms and
concepts. Most new MMSFORTH users already can program their computer
in BASIC. If you lack background, we suggest that you read any of the
large number of books and magazines on small computer theory (see
Appendix 14), register for a microcomputer course, join one of the many
popular computer clubs, or use the consulting services of Miller Microcom-
puter Services. The most important ingredients in your approach will be
interest, a willingness to experiment with new concepts, and above all,
the use of Forth on a live keyboard.

DIFFERENT STROKES FOR DIFFERENT KEYBOARDS

MMSFORTH offers an unusual ability to use programs, data and the
differently-formatted diskettes themselves across supposedly "incompatible"
computers. To assist users of this feature, this manual "translates" most
operations for several types of computer, not just your own.,

Readers using computers other than the Radio Shack TRS-80 Models I
or III may be confused by some of the references to their keyboard
layouts., The TRS-80's Enter key corresponds to Carriage Return or
Return on other keyboards, while its Backarrow key corresponds to
Backspace or Rubout, Radio Shack didn't give these computers a "full-
ASCII keyboard" but MMSFORTH does, by creating other key assignments:
Clear for a Control key, Shift-Clear for an Alternate key, Uparrow for
Escape, ete.

Similarly, readers not using the IBM Personal Computer may wish to
know that its keyboard provides Control and Alternate keys, as well as
Delete, Insert, Home, End, PageUp, PageDn, PrintScreen and other key-
board options, In general, MMSFORTH preserves their original operation
(i.e., Control-Break).

Although the IBM PC keyboard appears to provide four leftarrow Kkeys,
they are treated in differing and logical manners. The one on the left of
the keyboard is the "Tab-left", a shifted Tab key. At the right, the
top-most left-arrow is the "Back-arrow". The one beneath it is the Enter
key, and the one below that (on the numerie keypad) is the Editor
cursor's "Left-arrow", Have faith, you will learn!

Preface / P-5

USING THIS MANUAL

Tables have been included in this manual at the ends of Chapters 1, 2,
and 3 for ease of later reference. There are a few fundamental procedures
that must be observed in order to write clear Forth programs; we call
these Rules. Each is set off in upper-case and numbered on its first
appearance., They are also printed together as a list which makes up
Appendix A13. Other Appendices provide information for beginning
MMSFORTH users, unsupported internal information for experts, and
general background material. Appendix A9 consists of a MMSFORTH
Glossary that contains all commonly used words, It is provided in
exchange for your properly completed MMSFORTH License Agreement, and
is not available to non-users.

To make reading this documentation as easy as possible, the following
conventions will be used:

1. Examine this manual's type font carefully to learn the
differences between our printed O (the capital letter) and
0 (the number), between 1 (the lower-case letter) and 1
(the number), etc, :

2. FORTH words that appear in prose passages as examples
of commands are printed in capital letters, and are
enhanced when first introduced. Words defined as
occasional examples are also set off,

3. Where there might be confusion about who types what,
the computer's output is underlined.

4, In all examples that show stack usage, the top item of
the stack appears to the right (as it does on the video
sereen when you are entering).

5., Brief examples of definitions are provided as often as
possible, After the normal, horizontal placement of a
definition, a vertical breakdown is often provided with
components of the definition in a column to the left and
explanations or comments on key words in a column to
the right:

: DEFINITION condition IF this ELSE that
THEN continue ;

where:

P-6 / MMSFORTH USERS MANUAL

: DEFINITION Begins a new high-level dictionary entry
named DEFINITION .

condition Places a condition (non-zero/zero)
on the stack.

IF Removes and tests the condition on the
stack,
this Executes "this" if the condition was

true (non-zero).

ELSE
that Executes "that" if the condition was
false (zero).
THEN
continue Continues from both lines.

Terminates the high-level dictionary
entry.

»e

This expanded version is for illustration only; you will always use the
horizontal format.,

Additional conventions used in Forth manuals are those that Forth
programmers use to make source screens readable. A full listing of Forth
editing conventions for source text is provided at the end of Chapter 2.
Here are three that you will observe in the examples of Chapters 1 and
2:

1. Although only one space is absolutely necessary between
each word of a definition, spacing three times after a
new word that is being defined sets off the major
components,

2. Double spacing between phrases (logical clusters) of a
definition also helps make source text legible.

3. When a definition takes up more than one line, the
following lines begin with an indentation of two or more
spaces to save the left margin for words being defined.

Basic FORTH Operations / 1-1

1.0 BASIC FORTH OPERATIONS

Before you begin reading this manual, please take the time to read
through the Preface so that you understand the editing conventions and
the relationship of the MMSFORTH USERS MANUAL to other MMSFORTH
documentation.

The easiest way to learn Forth is to use it, Since Forth is an
interactive language, you can and should experiment with it directly at
your computer keyboard. In this introductory manual we will present many
examples to illustrate the capabilities of Forth, We urge you to try these
examples yourself at your computer, There are exercises at the end of
most of the chapters to help you learn to use Forth on your own, Other
problems may suggest themselves to you as you progress,

1.1 GETTING STARTED

Physically, your MMSFORTH system consists of a suitably configured
microcomputer (typically, a Radio Shack TRS-80 Model I or III or IBM
Personal Computer) with at least one disk drive and 32K RAM, and a
MMSFORTH System Diskette,

Conceptually, the MMSFORTH system (see the Memory Map in Appendix
A7) includes:

1. the Forth program, including interpreters, compiler,
assembler, and disk (and tape) interface;

2. the basie Forth dictionary;
3. variasbles, buffers, and stacks;

4, and memory available for an application vocabulary to be
programmed by the user.

The initial start-up procedure for MMSFORTH is outlined in detail in
Appendix Al. Using these instructions, you cause the Forth System on the
disk to be read into the memory of your computer., You can then use
Forth immediately to solve programming problems without need for any
other "monitor" or "operating system.,"

When your MMSFORTH System has successfully loaded, it will type out
_ok and space to a new line. The ok response is returned whenever the
Forth text (or outer) interpreter has successfully completed your last
request and is awaiting new keyboard input. You type commands at the
keyboard, concluding them with a carriage return (Enter key). When the
Enter key is pressed, Forth emits a space to separate your input from any
generated output and then begins interpreting your ecommands,

1-2 / MMSFORTH USERS MANUAL

Until you have actually pressed Enter, you may change your commands
by pressing the Backarrow key once to delete each unwanted character
(IBM: use Leftarrow key in top row), and then retyping the remainder of
the line. To delete a longer series of characters, you may hold it down
half a second for MMSFORTH's auto-repeat action. To delete the entire
line, depress the shift key while tapping the Backarrow (ie.,
"Shift-Backarrow"). MMSFORTH's optional "extended EXPECT" mode adds
editor-like capabilities within the keyboard input line,

The simplest command you can give to Forth is an empty line. If you
press the Enter key once, Forth will respond with a space, inspect the
input, see that there is nothing to do, output an _ok, carriage return to
the next line, and then wait for more input, You should try this to assure
yourself that your MMSFORTH System is alive and listening to you,

Basic FORTH Operations / 1-3

1.2 WORDS

The basic command unit of Forth is called a word, A word consists of
a string of characters (letters, numbers and/or symbols) that is delimited
by spaces (or carriage returns), There are no restrictions on the
characters that make up a word (except that a word may not have an
embedded space, carriage return, or backspace character), and there may
be as many as 31 characters in a word. This prineciple is important enough
to summarize:

RULE 1: FORTH WORDS ARE COMPOSED OF UP TO 31
PRINTABLE CHARACTERS, SEPARATED BY SPACES.

Note: In general, though, we avoid using lowercase letters in
Forth words, This prevents errors when the code must be run
on a video display without lowercase, and it increases the
readability of lowercase text and comments.

After you close a line of text with a carriage return, the Forth text
interpreter scans the input line, breaking it up into words which will be
executed in the order of entry. Each word in Forth has a name (the way
you refer to it; its proper spelling) and a definition (the meaning; i.e.,
the work that is to be accomplished).

To execute a word, the interpreter must determine the word's meaning
by searching the dictionary (actually, the CONTEXT and CURRENT
vocabularies - subsets of the dictionary - as described in Appendix 6.1.1).
The interpreter searches for the name of each word in order to locate its
definition, If the word is found in the dictionary, then the definition is
interpreted. If the word is not found in the dictionary, the interpreter
attempts to convert the word to an integer in the current base (see next
section),

When the interpreter cannot interpret a word (if the word is not found
in the dictionary and is not a valid number in the current base), then an
error message is given: the unknown word is echoed back to you on the
video display, followed by a question mark, There is no _ok or carriage
return after an error message.

Words are added to the dictionary by defining a "new" word in terms
of currently existing words in the dictionary, using Forth's compiler, This
extends the basie Forth system in the specific direction you want it to
take., Rather than individual special programs, you will create a growing,
more powerful Forth vocabulary, That means that you will spend more time
on your first application than the second. By the time you reach your
third application in MMSFORTH, you'll find that a suitable vocabulary
already exists to solve most of your programming problems with very little
additional effort,

1-4 / MMSFORTH USERS MANUAL

1.3 NUMBERS

To a computer, numbers come in a variety of types: single-precision or
double-precision integer, floating-point, real or imaginary, etc.
MMSFORTH ecan handle them all, but most common work is done with
integer techniques and at first we will limit our numbers to
single-precision as well,

Numbers can be expressed in any base; decimal, octal and hexadecimal
are standard. At any time you can use the commands DECIMAL, OCTAL,
or HEX, or you can define another base to establish the appropriate way
to treat all succeeding numbers, both for input and output. In general,
you should pick one base and stick with it throughout all your definitions
to avoid conflicts in interpretations, Initially, Forth assumes the DECIMAL
mode.

Numbers may be typed in as positive (always keyed in unsigned) or
negative (preceded by a minus sign) integers. Unsigned numbers in the
range 0 through 65535 are acceptable because they can be stored in
sixteen bits, "Signed numbers" in the range -32768 to 32767 can be
accepted; the negative values are stored in two's complement form in
sixteen bits, It is important to note that positive numbers larger than
32767 can be interpreted as two's complement negative numbers,
especially if they are involved in arithmetic operations, Numbers larger
than sixteen bits will be truncated to sixteen bits.

Numbers are entered by typing them at the keyboard, As with words,
numbers are bounded by spaces. The interpreter will first search the
dictionary for the Forth word entered. If it is not found in the dictionary,
the interpreter tries to convert the word to a number. (Practical jokers
have been known to define 1 as a word which returns a value of 5, for
example!) If the number conversion succeeds, it is placed on the
parameter stack, which will be described in the next section.

Since all numbers are stored in binary form, you can take advantage of
numeric base selection to perform number conversions, To convert a
decimal number to hexadecimal, for example, type:

DECIMAL 724 HEX .
and you will receive the response:

2D4_ ok

Remember that you stay in HEX mode until you type in the command
DECIMAL again,

Basic FORTH Operations / 1-5

1.4 THE PARAMETER STACK

All computer programs exist to manipulate data by using an established
set of parameters. Most of the parameters that Forth words use to
manipulate data are maintained on a push-down stack, called the
parameter stack, user stack, or simply, "the stack.," This stack, which is
sixteen bits wide, is similar to those in pocket calculators that use
postfix function keys or Reverse Polish Notation (RPN). A push-down
stack is a particular arrangement of memory storage; Forth words that
refer to the parameter stack do so by accessing only the topmost items
(the ones most recently placed on the stack). Conceptually, this stack is
quite like a cafeteria plate-warming stack; only the top-most "plate" is
accessible, but all others remain available in the reverse of the order in
which they went in., Forth utilizes your computer's random-access memory
(RAM) as Last-In-First-Out (LIFO) stacks. In this text, we will often
refer to the value on top of stack as TOS, the second on stack as 208,
ete,

During the boot procedure a single pointer is initialized to point to a
particular location in memory., Once this pointer is initialized, the
parameter stack grows toward low memory. When information is to be
written onto the stack, the address in the pointer is decremented and the
information is then stored at the location being pointed to. When
information is to be read from the stack, the information is fetched and
then the pointer is incremented, Note that while reading from the stack
effectively removes the information forevermore (unlike reading from
conventionally organized memory), writing to the stack preserves all the
prior contents of the stack that have not yet been read.

One of the basic rules of Forth, then, is:

RULE 2: MOST WORDS REQUIRE PARAMETERS ON A
PUSH-DOWN STACK.

Actually, Forth manages two stacks, We will defer discussion of the
other (the Return Stack) until later in the manual,

To place a number on the stack, you can type it as part of your input
commands, Now type:

2468

When you have typed in the example above, you have created a
push-down stack that looks just like the entry line, with top of stack (an

8) on the right,

One of the simplest kinds of operations Forth provides for manipulating
the stack is one that prints the contents of the topmost item., Forth's
predefined symbol, the period or dot, causes the topmost item of the
stack to be removed, converted to ASCII code digits in the current base,

1-6 / MMSFORTH USERS MANUAL

and then displayed. If the stack is as we just left it, then for each
period you type in, the successive topmost item of the stack will be
revealed, If you type five periods followed by a carriage return, your
CRT screen will look something like this:

e oo 8642 20868 , 2 Stack empty!

Each time the dot is encountered, the stack is depleted by one item,
Since there were only four items on the stack (put there by the four
operations 2 4 6 8), the fifth request for a display from the stack
displays a "garbage" number from above the stack, followed by a
compound error message indicating that it can't do a "." operation here,
because the stack is empty.

When you receive amy error message ("Stack empty!", "?", "Block-
protect”, etec.), you must remember that your stack has been emptied.
Before you can perform the attempted operation, you must reenter the
necessary parameters,

RULE 3: THE BREAK KEY OR ANY ERROR MESSAGE
EMPTIES BOTH STACKS.

The dot operator is useful when you are debugging a definition. If you
have trouble, you can display the stack, item by item, and compare the
contents with what you expected, That will usually isolate the problem. Of
course, reading the stack items will cause them to be removed. If you're
debugging, after you're satisfied with the displayed values, you may
simply type those values back in again:

2468

The MMSFORTH System's TOOLKIT extension includes a
non-destructive print-stack word, .S , and an even more elegant word for
stack manipulation experiments, TRY (see the footnote at Table 3). Just
enter TOOLKIT ; then use these new words to explore the new and
important world of Forth stack operations!

Basic FORTH Operations / 1-7

1.5 ARITHMETIC
Forth has a pre-defined set of arithmetic operators (see Table 1).
Since Forth uses a push-down stack and Reverse Polish Notation,

parameters must be on the stack before the operation can be performed.
Thus, to add two numbers together and display the results, type in:

5 27 + .. 32 ok

Breaking this line down into its constituent parts, you will find that:

5 Pushes the value 5 onto the stack,
27 Pushes the value 27 onto the stack.
+ Removes the top two items from the stack, adds them

together, and places the sum back onto the stack,
Note that the stack has a net loss of one item,

. Removes the top item from the stack and displays it:

32 ok
Thus you leave the stack just as it was before you started.

For programmers who have had some experience with algebraic
languages (like BASIC), Forth's postfix notation may seem unusual, It will
be familiar, however, to users of Hewlett-Packard pocket calculators and
many office calculators, and is extremely effective when used properly.
(It also happens to be the "natural"™ way you learned to add and multiply,
before you were retrained with algebra!)

Processing of comparisons may also be unfamiliar, Forth assumes the
conventions of positive logic: one (or non-zero) implies true, zero is
false, The Forth relational words (such as >, <, or =) may be
remembered as being written with the second stack entry on the left and
the top stack entry on the right, Thus A B < will test for A < B and
leave only a truth value on the stack, since both A and B have been
removed, The word NOT (or 0=) reverses the truth value of the top
item, changing zero to one and all else to zero. Logical branching words
(among others) in Forth depend heavily on these comparison methods and
their resulting stack values (see Table 2).

1-8 / MMSFORTH USERS MANUAL

1.6 STACK MANIPULATIONS

Other frequently performed operations are classified as stack
manipulations, for which Forth provides a few simple words. These words
(described in Table 3) are generally used to maintain discipline in the
stack when it contains parameters, Experimenting with these words will
make them useful to you quickly.

While you are practicing, keep in mind two elementary rules that you
must observe with respect to stacks, The most fundamental rule is to
maintain "parity" of operations on the stack: everything you put on the
stack must be removed by some operation. If you leave parameters on a
stack, it is because you have forgotten some step; this leads to stack
overflow, In other words:

RULE 4: ALL PARAMETERS PUT ONTO A STACK MUST BE
REMOVED WHEN THEY ARE NO LONGER NEEDED. THE

ORDER WILL BE LAST IN, FIRST OUT.,

Also remember that you should never remove more items than you have
first pushed onto the stack,

After you have become familiar with both the arithmetic operators and
the stack manipulators, you will want to create your own combinations.

For example, a convenient way to double a number is to add it to itself.
This can be accomplished by the sequence:

DUP +

where the DUP is used to duplicate the number on the stack. Similarly, to
square a number you use:

DUP *

Basic FORTH Operations / 1-9

1.7 DEFINITIONS

Part of Forth's power lies in your ability to define your own new
words., Imagine that you frequently want to add two numbers and print the
sum; you could always type in + and ., for each operation. That, however,
could lead to errors. Even in such a simple case it is possible to utilize
Forth's power, since it would be easier to type one word instead of two,

Try defining a new word, named ADD, by entering:
: ADD + , 3

" Here is what each component in this defining operation does:
: A colon begins a definition,

ADD The name of the word to be added to the dictionary
follows the colon that starts a definition.
For reading ease the name is followed by three spaces,

+ . The Forth words define what to do for ADD,
H A semicolon ends a definition,

After making this definition, you merely type in two numbers and then
the word ADD in order to compute and print the sum of the two numbers:

1 2 ADD_3 ok
4 5 ADD_9 ok
854 21 ADD_875 ok

Since ADD has now been defined to be identical to the executed
sequence of + followed by . , you can use either ADD or the sequence to
get the desired answer printed out,

What would have happened if you had used ADD before the word was
defined? Forth won't allow that. It prints out the undefined word followed
by a question mark. Try this with a different word, such as PLUS; you
will see the error message:

1 2 PLUS_BPLUS ?

1-10 / MMSFORTH USERS MANUAL

That points up another fundamental Forth rule:

RULE 5: ALL WORDS MUST BE DEFINED BEFORE THEY
CAN BE USED.

Fortunately, especially for the novice programmer, Forth has a rich set
of predefined words, One such word is ? %;ronounced "question-mark"),
which prints the contents of the location pointed to by the address on
TOS. ? has a simple definition which will become more clear in Section
4.2:

:? Q.

Another simple combination that is predefined in standard Forth, 2%,
doubles the top stack item, If it were defined in high level, its definition
might read:

t 2% DUP + ;

Tables 1 through 3 provide easy reference to other fundamental
MMSFORTH operators. The three tables include only the most basie
MMSFORTH words; for a complete glossary see Appendix A9, delivered.
upon receipt of your MMSFORTH License Agreement.

By taking advantage of Forth's ability to define new operations,
formulas may be neatly factored, with common components being defined
as operator words. Making good use of predefined Forth words and
choosing good names for your new operators can make the resulting
definitions both compact and readable.

For instance, the stack manipulation words DROP, DUP, OVER, SWAP,
and ROT can be used to assemble complex arithmetic calculations., Given
the constants A, B, and C, you can define a word named QUADRATIC to
compute the quadratie function Ax2 + Bx + C, where x is the value on
top of the stack, Once defined, it can be used to solve this quadratic
equation, With values of A=2, B=-2, C=4, and x=4, and the equation
factored to (Ax + B)x + C:

2 CONSTANT A -2 CONSTANT B 4 CONSTANT C
: QUADRATIC DUP A* B+ * C +

4 QUADRATIC .28 0Kk

Other Forth words may be defined to plot the results for various values
of x, ete,

~se

Basic FORTH Operations / 1-11

1.8 DUPLICATE WORDNAMES, AND CATALOG

Forth will not let you use a word until it has been defined (i..,
included in the CONTEXT or CURRENT vocabularies of Forth's
dictionary), but it will acecept duplicate definitions, It simply searches for
the first (newest) one which fits. Because older definitions will not search
the newer entries, their actions will not be affected by newer duplicate
wordnames,

MMSFORTH flags each duplicate wordname as it is added to the
dictionary. For example: ** Dup-pame: DIR 40] 14 ** indicates that DIR
has been redefined and that it was loaded from Block 40, Line 1, Column
14, (Don't panic - MMSFORTH does this on purpose to modify a lower
definition of DIR.) Duplicate wordnames can be effective; they assure that
newer words will not be able to access the older definition. But a
carelessly chosen one might be a poor choice for a new word, The
programmer can change the new definition's wordname by re-entering the
definition or the re-edited program, and also can suppress the Dup-name;
display from completed application programs (see the Glossary).

Just what is in the dictionary? The MMSFORTH word CATALOG is an
easy way to see, Reading from the newest -entry, it displays a
"Forth's-eye view" of the wordnames. See Appendix A8.1 for more
information on CATALOG.

1-12 / MMSFORTH USERS MANUAL

1.9 EXECUTE AND COMPILE MODES

The Forth text interpreter operates in two modes: immediate execution
and compilation. In immediate execution mode each word of the input
string is looked up in the dictionary and executed. During compilation, on
the other hand, most words are not executed; instead a reference to them
is compiled into a definition in the dictionary. The word : (colon) places
the interpreter in compile mode, from which ; (semicolon) returns it to

immediate execution,

The compiled form ("object code") of the definition consists of
pointers to the addresses of routines that will be executed by the address
(or inner) interpreter when the definition is executed., This indirect
threaded form of interpretation (address interpretation) is extremely fast.

To distinguish between the modes of immediate execution and
compilation, try the following examples:

905 ._905_ ok Executes immediately. Note the
interaction.

: SHOW 905 , ; ok Compiles; nothing happens yet,

SHOW_905_ ok Executes the compiled routine to

produce the desired result,

There are vast numbers of variations on these basic themes, as well as
whole groups of other words already defined in Forth, To learn quickly,
you must practice with the basic Forth words, the words desecribed in the
following chapters, and the words you evolve out of experiments, You will
learn to edit in descriptive wordnames, comments, stack in/out notations,
initials and dates, to leave a "sketch" of what you have done,

1,

Basic FORTH Operations / 1-13

EXERCISES
(after studying Tables 1, 2, and 3)

What is the difference between DUP * DUP * and DUP
DU’P * *

Using only two Forth words, define a word called 2DUP
to duplicate the top pair of stack items, That is, after:

123 2DUP
the stack should contain:
12323 (second 3 on top)

What is the difference between OVER SWAP and SWAP
OVER?

1-14 / MMSFORTH USERS MANUAL

Table 1 - ARITHMETIC OPERATORS

; Example of Example of
Word Deseription Stack Before -> Stack After
top top
+ Adds, 9 6 2 -> g 8
- Subtracts. 9 6 2 -> 9 4
* Multiplies. 9 6 2 -> 9 12
2% Doubles an entry. 9 6 2 -=> 9 6 4
/ Divides. 9 6 2 -> 9 3
ABS Leaves the 9 -6 -2 -> 9 -6 2
' absolute value,
MAX Leaves larger of 9 6 2 -> 9 6
top two entries,
MIN Leaves smaller of 9 6 2 -> 9 2
top two entries,
NEGATE Performs two's 9 6 2 -=> 9 6 -2
complement
(unary minus).
MOD Leaves modulus 9 11 3 -2 9 2

(division remainder).

Word

NOT
or 0=

0<

Basic FORTH Operations / 1-15

Table 2 - COMPARISON OPERATORS

Description

Compares; leaves
1 if second entry
less than top;
otherwise 0,

Compares; leaves
1 if second entry
greater than top;
otherwise 0,

Tests for zero;
leaves 1 if top
entry is zero;
otherwise 0,

Tests for negative;
leaves 1 if top
entry is less than
zero; otherwise 0.

Compares; leaves
1 if second entry
is equal to top;
otherwise 0.

Example of
Stack Before
top

9 6 2

9 6 2

9 6 2

9 6 2

g9 6 2

Example of
Stack After
top
9 0
9 1
9 6 0
9 6 0
9 0

1-16 / MMSFORTH USERS MANUAL

Table 3 - STACK MANIPULATION OPERATORS

Example of Exémple of
Word Deseription Stack Before -> Stack After
top top
. Prints the item 3 2 1 -> 3 2
that is on the
top of the stack.
DROP Discards top entry. 3 2 1 -> 3 2
DUP Duplicates 3 2 1 -=> 3 2 1 1
top entry.
DUP Duplicates top ' 3 2 1 -=> 3 2 1 1
entry if it is or
non=-zero, 3 2 0 -> 38 2 0
OVER Copies second entry 3 2 1 -> 3 2 1 2
over top entry,
ROT Rotates top 4 3 2 1 =-=> 4 2 1 3
three entries,
SWAP Swaps top two 3 2 1 -=>. 3 1 2

entries,

General (NOT recommended for regular use!):

PICK n PICK copies nth
entry over top entry.

ROLL n ROLL rotates top
n entries,

TRY: MMSFORTH Users can load the TOOLKIT Extension, then use the
word TRY to produce the stack operation displays on the preceding pages
and many others, For example, clear the stack by pressing Break, then
enters:

4 3 2 1 TRY ROT

or clear the stack and enter:

5 4 3 2 1 4 TRY PICK
(not TRY 4 PICK, because TRY must be followed immediately by the
operator!),

Editing Forth Blocks / 2-1

2.0 EDITING FORTH BLOCKS

When you first brought up your MMSFORTH system, you inserted a
diskette and booted up (pressed the TRS-80 Reset button, or the
Alternate-Control-Delete on the IBM PC). This boot procedure read the
precompiled MMSFORTH System program from the diskette into RAM. From
there on, entering DIR or any of the Directory menu words will read one
or more blocks of additional Forth source text from diskette and compile
it into RAM. (The cassette system has to make do without the luxury of
a directory-based system, but supports most operations albeit more
slowly,) Compiling, in Forth, is a process which translates "user-readable"
source text into dictionary entries that contain "computer-readable"
machine code and addresses. Only the machine code and addresses reside
in memory; source text remains on diskette,

When you simply type trial definitions at your keyboard, they are
compiled immediately into your dictionary and your source text is "lost"
(i.e., not preserved on diskette and not retrievable). When you reboot your
system, any such occasional definition will have been cleared out. (1t is
this aspect of Forth that allows you to test definitions in an impromptu
manner,) If you then want to use any of your occasional definitions again,
you will have to type them in once more.

It is mueh more convenient to put your tested source text on the
diskette by using an Editor, just as the MMSFORTH system programmers
have done, Using the same process that boots the system (see Section
2.1.2), your definitions can be compiled into memory from the diskette
rather than from the keyboard,

Before discussing how text is entered on diskette, let's consider the
structure of the diskette,

2-2/ MMSFORTH USERS MANUAL

2.1 BLOCKS AND SCREENS

Each diskette contains a fixed number of blocks; each block is
numbered and contains 1024 bytes. Whenever a block is needed, it is
requested by its block number. The block number reflects its relative
(logical) position on the diskette(s) so that Block 0 is the first block,
Block 1 the second, and Bloek 178 the last block on a standard TRS-80
Model III disk drive in Drive Position 0; Block 179 would be the first
block on Drive 1. (Model I and IBM users read on!)

Source text in MMSFORTH is formatted for the video display in a
sereen. A screen is a set of 1024 continuous characters formatted as
sixteen lines of sixty-four characters each. (That's conventional for Forth
on any computer.) Since a character occupies one byte, it takes 1024
bytes or a single block to hold an entire sereen, A standard Model III
diskette can hold 179 sereens of source text, numbered from 0 to 178, A
standard Model I 35-track drive permits 87 blocks, and a 40-track
single~density drive permits 99 blocks per diskette., A standard IBM PC
drive (40-track, double-density, IBM format) permits 159 blocks per
diskette,

Sereens 0 through 14 (IBM: 0 through 19) contain your basic
MMSFORTH system as precompiled binary (machine code) information. On
the standard TRS-80 MMSFORTH System Diskette, Blocks 40 and 41 (53
and 54 on IBM PC) are a pseudo-directory with several menu screens
appearing on higher blocks, Blocks 16-39 (21-52 on IBM PC) are Forth
source for much of the code precompiled in Blocks 0-14, and a series of
blocks beginning at 43 (56 on IBM) include optional Forth utilities,
extensions, sample application programs, etc., all available for loading
when desired. Block 15 (20 on IBM) is an Option Select Block which may
be used to reprecompile a MMSFORTH System with non-standard features.

For the advanced user: Why in some cases do we use one block less
than the diskette capacity? Because MMSFORTH allocates the first two to
four sectors of each diskette as a boot section, under Block 0. Also,
some versions of Forth use blocks the size of one disk sector (usually 128
or 256 bytes), and thus have four or eight blocks per screen, MMSFORTH
avoids this confusion, and has efficient sector I/O words (DRDSECS and
DWTSECS) for operations on that scale, The TRS-80 Model I and Model III
use 256-byte disk sectors, and the IBM PC uses 512-byte sectors except
when adjusted to M.3 format.

Editing Forth Blocks / 2-3

2.1.1 Blocks and Virtual Memory

To place a specific disk bloek into computer memory, Forth uses the
fundamental word BLOCK preceded by the appropriate number. Thus,

35 BLOCK

places Block 35 in memory and leaves the memory address of the zeroth
byte of the block on the stack,

If any data is written into the bloeck in memory, the block must be
marked so that the revised block contents will replace the old on the
diskette -- a critical ingredient of Forth's virtual memory concept, The
word UPDATE is used for this purpose. UPDATE marks the most recently
used block for writing to diskette, although it may or may not be written
to diskette immediately, The word FLUSH (or its 79-STANDARD synonym,
SAVE-BUFFERS) is used to force any "updated" blocks out to diskette
and should be used before shutting down the system,

We will often use more sophisticated words build on BLOCK, UPDATE
and FLUSH, but these three words comprise the basic block I/0O routines,
To understand them more thoroughly it is necessary to understand the
nature of virtural memory as Forth uses it., The memory address that is
returned to you in the routine named BLOCK denotes the location of the
data portion of one block buffer. The block buffers reside at fixed
locations in memory, just under the MMSFORTH Dictionary and optionally
at the top of memory. Each containes 1026 bytes: 1024 bytes of data
from diskette plus a two-byte block ID (identification) word with a value
between 0 and 65,535 (which should be enough not only for your
four-drive microcomputer, but for a Winchester hard-disk drive, as welll),
Your MMSFORTH System comes with two block buffers and may be
configured for more, Normally, two is a good trade-off between memory
usage and disk accessing.

The word BLOCK first searches the block buffer IDs to see if the
block currently resides in the block buffers, If it does, no diskette access
is made. Otherwise, the block is read from diskette, UPDATE sets the
high-order bit of the high-order byte of the Block ID to one if the block
is to be written to diskette., A block is written to diskette when its
buffer is needed by another BLOCK request or when FLUSH (or
SAVE-BUFFERS) is specified.

2-4 / MMSFORTH USERS MANUAL

2.1,2 Screens

When source text is to be interpreted from diskette or cassette, you
will use the word LOAD. Thus,

50 LOAD

interprets the block that makes up Screen 50 as if you had typed all the
text this screen contains at the keyboard, The immediate implication is
that a screen can contain both definitions and any immediately executable
commands., Any definitions will be compiled; any other commands will be
executed,

To display the contents of a screen, one can use the traditional Forth
word LIST. For example,

38 LIST

formats Screen 38 into sixteen numbered lines of sixty-four characters
each and shows them on the video display, LIST also remembers the
current screen so that once you have listed a sereen, you may re-List it
by simply typing L. L looks at the contents of the user variable SCR,
which contains the sereen number of the current sereen, LIST is available
at all times on the system, unless your application removes an upper part
of the system itself,

As we are about to see, MMSFORTH's EDITOR provides a better tool
than LIST for most purposes. Using it, the equivalent commands will be
38 EDIT, and E (to re-Edit the current screen).

Here's an issue concerning LOAD which will make its point later.
79-STANDARD Forth uses wraparound in each block, which is to say that
it treats the 16 lines as 1024 continuous characters, So don't place a
character in the 64th position on one line and another in the first position
on the following line, unless you intend them to be run together when the
block is loaded into Forth!

Editing Forth Blocks / 2-5

2.2 THE EDITOR

FdkckgkkkkRkRkkFkRkkkkbkkikkks [MPORTANT #¥dskkkdokkdskskddkdidhdkkidiokkkidkk

The Editor is potentially dangerous in that it can change the code you
need to have, Before you try it out, read this deseription, Then,
experiment on a spare copy or a write-protected diskette until you have
gained expertise, In particular, TRS-80 Model I users with no lowercase
modification should avoid editing our provided blocks; they contain
lowercase information which you cannot read. Instead, first use the
ALLCAPS Utility (see Section A4.6) to convert a duplicate disk's Forth
source blocks to uppercase only.

WHEN IN DOUBT, ALWAYS BACK-UP BEFORE IT'S TOO LATE!

kkEkkkkkkRRRRRkkFRbkRRERkERERE [NMPORTANT F*dkkkiokgadkkskikdkkhpdkhikbkhk

In recent versions, the MMSFORTH Editor has evolved far beyond
conventional Forth (or BASIC) editors. Some conventional Forth editing
words may exist on older systems, but we will emphasize use of the
simple and powerful MMSFORTH Full-screen Editor. To gain access to it,

simply type:
38 EDIT

and MMSFORTH will invoke the Editor (which also may be done by
entering EDITOR), will do a 38 BLOCK, will set SCR to 38, and will
display Block 38's text on screen, Unlike the LIST operation, the
TRS-80's EDIT doesn't have line numbers, so all the information fits
neatly on the 1024 screen locations without scrolling off the top. Also,
the cursor is changed to a Replace cursor now, signelling that you are
ready to overwrite the existing text,

MMSFORTH will retein access to the Editor until you compile a
definition, After compiling a definition, you need to invoke the Editor
vocabulary again if you are to use it, Normally, this will only require
using the EDIT operation again, or entering E if you are re-Editing the
current sereen. But if your application has overlayed the Editor code (by
calling FORGET SCR, FORGET DIRBLK, etc.) you will have to reload it
(see Section 3.2.1, "Overlays").

Within the Editor you can call on three types of editing words: those
that work on characters, those that operate on whole lines, and those
that work on whole sereens. All require holding down an Alternate key or
a Control key (the TRS-80's Clear key) while pressing the proper key.
For Line and Screen operations, you must hold down the Alternate key (on
TRS-80, Shift and Clear keys together). This multiple key requirement
reduces accidental loss of data and permits more modes of operation,
full-ASCII keyboard usage, etc,

2-6 / MMSFORTH USERS MANUAL

MMS has chosen its Editor keys for mnemoniec value: notice the words
which aceompany each Kkey, in order to remember them easily.
(MMSFORTH's NCASE structure makes it easy for advanced users to
reassign these Editor key functions, too!)

2.2.1 Editing by Character

The Editor pops you onto the screen of your choice in the Replace
mode, ready to overwrite one character at a time at the cursor position.
On the TRS-80, the cursor (an ASCII code 143) is as high as a capital
letter when in the Replace mode. (It was under the line, an ASCII 176,
while in the normal keyboard entry mode.,) You use the four direction
arrow keys to steer the cursor about the sereen, Holding down an arrow
key will cause continuous movement after a moment of delay, and the
Shift-Rightarrow or Shift-Leftarrow will hop across to the next
eight-column position - try it and see. A Shift-Uparrow "homes" the
cursor to the upper left corner of the sereen. IBM users: the Replace
cursor is an underline character, the Tab and Shift-Tab hop left or right
by five-column positions, and a specific Home key is available.

To replace one or more characters, just type the new text over the
old, On IBM use the Delete key, or on TRS-80 use Control-D, to Delete a
character (that means to hold down the Clear key while pressing the D
key, remember?); keep holding down to automatically "gobble" characters
from the right. These tools are all that are required to write new screens
or to rewrite old ones. And, of course, you can use the Editor to just
look without changing the sereen at all!

But you have more tools than these. Pressing Control-1 (Insert on IBM)
toggles the Editor from Replace to the optional Insert submode, in which
you insert characters into the line instead of overwriting them. Note its
tall cursor character (on TRS-80, an ASCII 191). You return from the
Insert option to the default Replace submode with the same Kkeyboard
action, Control-O may be used to Open a place in the line by inserting
one or more spaces, ASCII 32's. Unlike toggling into the Insert mode to
Insert spaces, Opening may also be done in the Replace submode.

Another toggle option, Control-P, moves the Editor into the optional
Page submode or back to the default Line submode, While in the Page
submode, your editing operations operate on a continuous 1024-character
"line" spanning the whole screen, instead of just the normal 64-character
line. On the TRS-80, it's obvious that you are in the Page submode: its
cursors are half as wide as the normal ones. The IBM Editor screen spells
it out for you, When you are in the Page and Insert submodes
concurrently, you have a miniature word processor which is useful for
moving columns of tables, inserting code in tight areas and then
realigning text, ete. (MMSFORTH also includes THE NOTEPAD, a more
complete word-processor using many of these same features,)

Editing Forth Blocks / 2-7

One final character-type operation, Control-T, Truncates the line by
replacing all characters from the cursor to the right end of the line with
blanks.,

Reviewing the above, note that the character editing commands require
combining a control key with the action key, while cursor movement does
not,

2.2.2 Editing by Line

The above operations edited one character at a time, but MMSFORTH
also can move whole lines at a time., In general, full-line editing
operations use the same words and concepts, except that substituting
Alternate for Control (i.e., adding Shift to Control on the TRS-80) causes
the control operation to address the whole line instead of a single
character. Thus, Alternate-D Deletes a line instead of a character, and
continuing to hold the keys down results in Deleting all the lines - the
approved Editor method for clearing a screen - instead of deleting
characters from a single line, But, and this is important, the deleted line
also is stored temporarily in a scratch-pad area of RAM beginning at a
variable address labelled PAD, and is available for reentry on the same
line or anywhere else. Prove it by moving the cursor up to Line 0 and
Inserting the deleted line ahead of it with an Alternate-I . As in the
character operation, the new data is inserted before the present line. The
IBM displays this "PAD buffer" as a separate line,

Alternate-R will Replace the present cursor line with a copy of the
line currently in PAD, and Alternate-C will Copy the cursor line into PAD
without otherwise affecting it on screen,

Note: PAD is not cleared automatically; initially, it might
contain one or more 0 values which look like blanks but are
not, So clear it yourself by copying a blank sereen line into
it, before presuming those empty spaces are ASCII 32's.

2.2,3 Editing by Screen

The screen is the basic unit of Forth editing, and the MMSFORTH
Editor has another group of Alternates for manipulating it as a whole.
EDIT, of course, is the word we used to Edit the screen whose block
number is TOS, and we can re-Edit the current screen with E . With or
without our apparent screen changes, the block will be left without actual
change if we press Alternate-Q to Quit (mot Break!) or if we press
Alternate~-Downarrow to advance to the next sereen or press
Alternate-Uparrow to back up onto the preceding screen - just as the
downarrow and uparrow moved us to the next or preceding line,
respectively,

2-8 / MMSFORTH USERS MANUAL

IBM PC: If you make the error of using Break instead of
Alternate-Q to exit the editor, you will leave the display in
the Editor's special window mode: 64 columns by 16 lines,
centered, with scrolling disabled. To restore normaley, just
enter W/0 (window zero, the default version of SET-WINDOW)
or W/0 PAGE.

To prepare the block for writing to disk we can Update the block with
an Alternate-U before moving on. The Editor will acknowledge this
operation with a brief black-out of the screen, and Forth's virtual memory
will handle the rest automatically each time enough new blocks are
brought in to displace the modified ones back out, Or we can use an
Alternate-S to simultaneously Save the new screen into its bloeck buffer
(updating it in the process) and then leave the Editor. Usually, you will
follow through by keying in a FLUSH command to force the changes to
disk - a necessity when you are not modifying more blocks!

A powerful feature of the MMSFORTH Editor is its Alternate-E
function which Exchanges the contents of the first two block buffers onto
the screen. Use it to flip back and forth between any two screens of your
choice while moving lines, comparing features, etc. Or continuously hold
down this key combination in order to scan two supposedly similar blocks
for any differences, which will flicker most obviously!

A nice Editorial touch on the TRS-80 is Shift-Control-B, which
temporarily overwrites the upper-left corner of the block with its Block
number. The IBM PC display has enough additional lines to show this
Editor information normally.

Editing Forth Blocks / 2-9

2.3 INDEX

Having a superior Editor is good news, but how do you know which
block is which? One way is to sean up through the screens with
Alternate-Downarrow or back toward smaller block numbers with
Alternate-Uparrow. But you will probably use the Forth word INDEX even
more, since it provides a compact, easily scanned summary report of each
block's 0-line on sereen or paper. Try indexing 10 blocks starting on
Bloek 20, as follows:

20 10 INDEX

To make optimum use of INDEX, follow the Forth convention of using
the 0-line of each block for appropriate remarks.

24 COPY

Only one of MMSFORTH'S many copying routines, COPY, is a part of
the standard MMSFORTH vocabulary., (For the others, you must load
another Utility from the diskette). COPY appears to copy one block to
another but actually it only renumbers the screen and prepares to send it
to another place on disk, by rewriting its block ID word and marking it
for Update. (That means you DON'T COPY to a number which is already
in a block buffer, as that would leave two buffers with different data but
identical block number.) Just enter:

20 40 COPY
to "eopy" Block 20 onto Block 40, Unless you are positive that

MMSFORTH's virtual memory will be invoked, follow the COPY with a
FLUSH to force the actual write to diskette!

2-10 / MMSFORTH USERS MANUAL

EXERCISES
Enter some text, such as a series of punch lines to jokes
or names of friends, into each line of your practice
sereen,
Exercise until you can quiekly:
Exchange Lines 13 and 14 (with no duplication of text).
Return your sereen to its previous state.
Exchange Lines 15 and 13.
Exchange Lines 15 and 0., Repeat.
Blank Line 15,

Replace Line 5 with brand new text, two different ways.

Editing Forth Blocks / 2-11

Table 4 - EDITING COMMANDS

C- means to hold the Control (TRS-80 Clear) key
while pressing the active key.
A- : means to hold the Alternate (TRS-80 Shift and

Control) keys while pressing the active key.
INVOKING EDITOR MODE:

n EDIT Enters EDITOR mode with Block n in a buffer and
on the display.

E Reenter EDITOR at current screen (SCR @ EDIT).

CHARACTER EDITING:

arrows Move cursor one character or one line,

Shift-arrows (TRS-80) Move cursor right & left mod 8,

Tabs (IBM PC) Move cursor right & left mod 5.

Home (IBM) Home cursor to top left of screen.,

Shift-Uparrow (TRS-80) (as above)

Enter "Carriage return" the cursor,

c-D Delete present character, filling in from the
right/down, :

Delete (IBM) (as above)

Back-arrow (IBM) Delete preceding character, sliding text to left.

Cc-0 Open; insert one blank character, spreading out to
the right/down,

C-I Toggle between Replace and Insert submodes,

Insert (I1BM) (as above)

Cc-p Toggle between Line and Page submodes.

C-T ~ Truncate present character and eall to right,

WHOLE-LINE EDITING:

A-D Delete present line (and place in PAD); hold to
clear screen,

A-1 Insert PAD's line above present line,

A-R Replace present line with line in PAD.

A-C Copy present line into PAD.

WHOLE-SCREEN EDITING:

A-U Update present screen; save display into buffer
now, FLUSH to disk later via virtual memory.

A-Q Quit EDITOR (retain last-Updated version of
present screen in buffer).

A-S Substitute present screen into RAM block buffer
and leave EDITOR (Like A-U plus A-Q).

C-PgUp (I1BM) Proceed to next lower-numbered screen,

A-Uparrow (TRS-80) (as above)

C-PgDn (1BM) Proceed to next higher-numbered screen,

A-Downarrow (TRS-80) (as above)

A-E Exchange first two block buffers onto screen,

A-B (TRS-80) Temporarily display current block# onto screen,

2-12 / MMSFORTH USERS MANUAL

Table 5 - EDITING CONVENTIONS

Conventions exist for editing screens to make Forth source text more
readable. These conventions are not dictated by the nature of Forth and
will sometimes be ignored (as in tight-packed MMSFORTH System blocks).
But for general use, we recommend them as good programming practice.
We also recommend using MMSFORTH's NOTEPAD utility, expanded to the
correct number of blocks, for rearranging source text within or across
bloeks.

1. Line 0 of each secreen begins with a parenthetical
comment that describes the contents of the screen., The
comment identifies the screen and is conveniently listed
by:

Y first-block# #blocks INDEX

You may wish to standardize with date at the left as on

the MMSFORTH System Diskette, include initials, etc.

2. A single screen contains source text for words related to
some one function or isolatable portion of a function, Do
not put unrelated words in the same screen,

3. Do not overpack a screen. Leave several blank lines for
expansion, Except on a necessarily full diskette, there is
no advantage to conserving screens,

4, Do not define more than one word on a line. An
exception might be two or three related constants or
variables, or a couple of very brief related colon
definitions.

5. Leave three spaces after the name being defined in a
colon definition, to set it off from the definition.

6. Break colon definitions up into phrases, separated by
double spaces, so that each phrase describes a particular
operation:

¢ TRIPLE X @ 3* X!

7. If a definition takes more than one line, indent two or
more spaces on the second and succeeding lines,

8. Separate instructions in CODE definitions with two
spaces.,

The definitions and screens in this manual, as well as the source
blocks on your MMSFORTH System, provide some good examples of
well-organized Forth screens (and some tight-packed ones, too!).

Copying, Loading & Printing / 3-1

3.0 COPYING, LOADING AND PRINTING

Copying operations allow us to create backup diskettes for insurance
or to send appropriate programming to others. (Remember that COPIES OF
YOUR MMSFORTH SYSTEM ARE NOT TO BE SENT TO ANY OTHER
USERS - each user must buy and register his/her own licensed and

serialized copy of the MMS-written portion of the system!)

You can also use copying operations to rearrange Forth blocks on the
diskette for improved logic flow, to reallocate space to new programming,
and to remove those MMSFORTH System blocks from your own diskettes
- before sharing the remaining code with other MMSFORTH users,

Loading is the way we translate the information on diskette through
Forth's block buffers and into executable code in RAM. MMSFORTH

provides a fine selection of options for this important task.

If your computer system includes a hard-copy printer, you will like
MMSFORTH's simple and versatile printer routines. They're an important
professional tool for producing reports, text processing, or listings of
your programs for debugging and documentation.

3-2 / MMSFORTH USERS MANUAL

3.1 MORE COPYING UTILITIES

The Editor permits us to create and modify Forth source code, one
block at a time, Disk operations may also require copying utilities to copy
one bloek, multiple blocks, and multiple tracks, up to full-disk copy
routines. Among the copying utilities supplied with the MMSFORTH System
Diskette are COPY, FORMAT, BACKUP and COPIES. Additional routines
called DISK-TAPE and TAPE-DISK are provided on the System Diskette's
CASSETTE optional load bloecks to permit the copying of multiple blocks
from disk to cassette and vice versa.

Model III users get another major bonus: the ability to change any
drive from double density format to single and back again, from the
keyboard or in software, It's simple:

1 SDEN

sets Drive 1 to Single DENsity format, immediately., (And 1 DDEN sets it
back.) This means that you can assign a drive to single density and read,
write or run one or more Model I Forth diskettes in eonjunction with your
Model III operations! Once set and loaded with the proper diskettes, the
operations are completely transparent to the user.

In similar manner, IBM users may assign any Drive n to Model III
format with n M3 and back with n IBM.

The MMSFORTH Editor's COPY command was deseribed in Section 2.4.
Except for COPY, all normal copying operations are accessed through the
MMSFORTH System Diskette's UTILITIES menu, This is the normal default
menu when you boot the MMSFORTH System Diskette. It can be recalled
from other menus by entering UTILITIES or DIR.

3.1.1 FORMAT

ALL COPYING OPERATIONS IN MMSFORTH REQUIRE A
PREFORMATTED DISKETTE. (By splitting the operations in this manner,
we needn't waste time formatting an already-formatted diskette,) So if
your destination diskette isn't already formatted, use MMSFORTH's
FORMAT utility to do so before proceeding to use it. (Although
MMSFORTH's FORMAT utility is not useable by other DOS systems,
MMSFORTH copying operations ecan operate on diskettes formatted by
other common DOS systems.)

To rebuild a faulty section on a diskette, first copy all retrievable
blocks to another disk and then use FORMAT-TRACKS to save the day.
To re-format 2 tracks on Drive 0 starting on Track 22:

0 22 2 FORMAT-TRACKS

Copying, Loading & Printing / 3-3

3.1.2 BACKUP

The MMSFORTH BACKUP Utility is used to make a track-by-track
copy of one diskette to another of the same format. If you specify the
same disk drive number for both copies, you will be queried for the
amount of RAM available; this determines how many tracks of data can be
moved across in each pass, using an internal 1DRIVE-BACKUP routine,

When BACKUP is loaded, so is BACKUP-TRACKS. It's a great help
when you know your disk drives need readjustment but you've got to get
a job done first! If your BACKUP operation fouled up a track or two, use
BACKUP-TRACKS to complete the job quickly. To backup 2 tracks from
Track 14 on Drive 1 to Drive 0:

1 0 14 2 BACKUP-TRACKS

WARNING: You probably got a ?Read: message first,
indicating that you have a less than perfect read in a block
buffer right now. It's there so you can examine it if you
wish (with EEDIT); but then BE SURE TO CLEAR IT OUT
by entering EMPTY-BUFFERS to assure that it isn't carried
on into a backup or some other "save" operation!

3.1.3 COPIES

The MMSFORTH COPIES Utility does a slower but very versatile
Blocks-COPY. It lets you slide a range of blocks from one place on your
disk drives to another, even between two different disk formats. COPIES
uses the words BCOPY and <BCOPY, which advanced users may also use
directly in their own routines or from the keyboard., Following
MMSFORTH's convention for calling moves of any kind, both use the stack
in this order:

from to count BCOPY

Thus, one would do a blocks-copy of 10 source blocks starting on
Block 210 to a destination starting on Block 70 as follows:

210 70 10 BCOPY

Note that BCOPY, and therefore COPIES, automatically FLUSH to
diskette. Set PBLK, the MMSFORTH block-protect number, low enough in
advance of their use or you will have to go back and do so before
proceeding!

3-4 / MMSFORTH USERS MANUAL

3.1.4 OFFSETS
Now for a few fancy offset options in MMSFORTH.,

sl, :2, 23, and :R are offset conversion routines which are very useful
in blocks~copy operations between drives, or when you know the last
block number instead of the number of blocks being copied. :1 adds to the
number on TOS the number of blocks on Drive 0. In other words, it
converts the block number on TOS to the correet one for Drive 1. So if
you are copying Blocks 40 to 80 of one diskette to Blocks 12 and up on
another, you can enter:

40 12 :1 80 39 - BCOPY

and MMSFORTH will complete the task., Like :1, :2 and :3 convert
(offset) for Drive 2 and Drive 3, respectively.

tR converts to a Range, Consider the following demonstration of its
use with INDEX. As explained in Section 2.3, INDEX expeects the stack to
contain the first block number and the number of blocks to index. But
suppose you want to index all blocks from Block 39 through Bloeck 83, and
you don't want to calculate the actual count if you can avoid doing so.
:R to the rescue, as follows:

39 83 :R INDEX
There, what could be easier? Note that :R leaves the starting block

number 208, which can spell trouble in fancy operations (such as BCOPY)
unless you think it through!

Copying, Loading & Printing / 3-5

3.2 LOADING MULTIPLE BLOCKS
In Section 2.1.2, we introduced the LOAD command:
40 LOAD

loads Block 40 into your computer's executable memory, compiling the new
words into the dictionary above those already aboard.

If you wish to load a range of consecutive blocks, MMSFORTH
provides a number of options. First there is a word LOADS which expects
a first block number and a number of blocks to load:

40 5 LOADS

will load five blocks, starting with Block 40, One might load a program
covering Blocks 35 through 73 by entering:

35 73 :R LOADS
or load the same program from a diskette on Drive 1 with:
35 :1 73 :1 :R LOADS

But you might want to have a simple directory block with a menu, in
which the operation will be identified as beginning at Block 40, without
requiring the directory to know how many blocks will follow, Easy! Just
prime the first block of the program with that information, by ending
Block 40 with:

41 4 LOADS
to drag along the additional blocks!

Alternatively, you can chain successive blocks by ending each one with
--> ("dash-dash-greater") to load the next., The many possible
combinations of these devices make multiple bloeck programming easier
while avoiding need for a complicated file system, But be careful: -->
resets the LOADS "eounter", UT, to 1. Thus, if six blocks starting on
Block 40 are linked together with -->'s and you use 40 4 LOADS you will
load all six! But if only the first two blocks have them, 40 4 LOADS will
not load the fourth block!

MMSFORTH handles multiple loads by moving the entire sequence of
bloeks through a single bloek buffer, This permits two-buffer
cassette-based MMSFORTH systems to retain a load block in the other
buffer, without requiring repositioning of the tape in order to resume
operation at the load block once the other sequence is completed. Because
of this feature you may wish to enter EMPTY-BUFFERS in circumstances
such as swapping diskettes, to forget the earlier load block before it

3-6 / MMSFORTH USERS MANUAL

could coincide with a new block you might ecall.

h In MMSFORTH we identify the diskette's Directory Block (or the first,
if there are several) with the constant, DIRBLK. To see the directory,
just enter:

DIRBLK EDIT

This method permits relative addressing of programs from DIRBLK, as
in:

DIRBLK 15 + 5 LOADS

If your programs are referenced in this manner, you will be able to shift
the directory AND the program blocks en masse to another location using
the COPIES utility, with no need to renumber block loads!

3.2.1 And FORGETting Them (Overlays)

You cannot keep loading more Forth blocks indefinitely, or their
compiled code will occupy all available RAM and overwrite the stacks,
"blowing" the system, Forth traditionally defines a dummy word : TASK ;
to mark the beginning of each temporary batch of code, or overlay; when
you are done using that batch, it can be forgotten by saying FORGET
TASK and all more recent programming is removed from Forth's
Dictionary, freeing space for the next task!

On any system, the use of overlays insures that the definitions of
each application are made in terms of the initial, standard set of
MMSFORTH words rather than in terms of any new meaning that another
vocabulary may have given to a particular word. This will happen
automatically if you adhere to the convention of using : TASK ; at the
beginning of each application, and FORGET TASK at its conclusion.

The MMSFORTH System Diskette's directory is one example of Forth's
flexibility, This particular directory is done in a rather sophisticated
manner which you will appreciate later, but it is just one more way to
create this optional feature. The choice is yours., Often, you won't need
any directory at all and will say FORGET DIR in order to free the
dictionary space for other use,

FORGET doesn't forget everything!: FORGET removes the
overlay vocabulary, but it cannot undo system settings
without your help. An example of this unusual consideration
is any routine which readjusts the use of interrupts, such as
the CLOCK Extension, Should this become a problem,
reinitialize the interrupt setting or simply reboot.

Copying, Loading & Printing / 3-7

3.2.2 Look Ma, No System!

For an unusual example of the independence of MMSFORTH and its
pseudo-directory compared to a conventional disk operating system, let's
boot the MMSFORTH System Diskette and then move it over to Drive 1
(leaving Drive 0 empty!) and keep using it anyway using some of that
relative addressing we described,

All we need do is redefine DIRBLK to the same relative location on
Drive 1, FORGET DIR to get rid of the now-wrong block numbers to load
the programs listed in the menu, and call DIR again to recalculate new
ones, Like so: '

DIRBLK :1 ' DIRBLK !
FORGET DIR DIR

Go sahead, try a sample program, etc, Now try explaining that to your
non-~Forth friends!

3-8 / MMSFORTH USERS MANUAL

3.3 TALKING TO YOUR PRINTER (MEET VIRTUAL I/O!)

Before doing much work with your printer, check its features and
determine whether it will run on the standard "Centronics parallel”" printer
port and printer-driver which are supported by MMSFORTH and your
mierocomputer system,

For you technical types, MMSFORTH normally utilizes a
simple Forth printer-driver (on TRS-80, with the standard
DCB addresses and making slight use of the TRS-80's BASIC
ROM routine). Line feed problems can usually be resolved by
resetting printer switches (TRS-80 computers expect the
printer to supply the LF on CR, whereas IBM PC's supply it
themselves) and/or the value of MMSFORTH's LINE FEED
variable (see Appendix 12).

Serial and extended printer-drivers are available as options;
the latter can be varied to completely bypass the TRS-80
routine, to send appropriate codes to graphics printers, etc,
RS-232 serial ports and other printer-drivers are also
possible to interface with MMSFORTH, although custom
drivers are not delivered with the system.

MMSFORTH implements virtual I/0, which is to say that your
MMSFORTH System doesn't much care whether its programming Input
comes from tape, disk, hard disk, telephone cable, etc., or whether its
Output is going to be sent to screen, printer, telephone cable, tape, disk,
ete, This concept encourages a relatively independent style of
programming which molds to future uses without demanding major
re-programming, Normally, your MMSFORTH Disk System comes up
expecting data to come and go to disk, and printing to go to screen
(CRT, or Cathode Ray Tube). The I/O "switches" are reset with
MMSFORTH words, and stay set one way until you again reset them or
re-boot. Thus, to send the printing to your printer instead of the screen,
enter PRINT . When you want it back on sereen, enter CRT . And for the
best of both worlds, enter PCRT and get both at once!

WARNING: At the end of a PRINT operation, don't forget to
enter CRT or you won't see an OK and will think you are in
limbo!

Copying, Loading & Printing / 3-9

3.3.1 PLIST, PLISTS and MARGIN

Using virtual 1/0, you can power up your printer and then access it on
command from the keyboard., You can list a program block by entering:

PCRT 40 LIST CRT

Try it! Then substitute for LIST a fancier MMSFORTH option, PLIST, and
try again. Notice that PLIST is a Printer-optimized version of LIST,
beginning the listing with the block's number.

MMSFORTH offers an optional Extended Printer-Driver with lots of nice
page-formatting features, but even its standard Printer-Driver offers one
nice one called MARGIN. This variable contains the number of characters
to indent for the left margin. (MARGIN 2+ C@ gets you the current
column for the Standard or Extended Printer-Driver.) If your printer prints
an 80-column linewidth and you are listing a 64-column Forth block with
three extra columns for the line number, you might center the print-out
by entering:

5 MARGIN !

Now print Block 47, for example, with:

PCRT 47 PLIST CRT

- Try printing an index of a range of blocks, such as:

PCRT 35 42 :R INDEX CRT

MMSFORTH also has a multiple-blocks version of PLIST, called PLISTS.
It's fine for listing our program blocks or your own, First properly reset
your printer to the top of a page, then try PLISTS with PAGE to get

back to the top of the next page when you are done:

PCRT 40 4 PLISTS PAGE CRT

3-10 / MMSFORTH USERS MANUAL

3.3.2 TLISTS, TINDEX and SCREEN-PRINT

MMSFORTH also provides time and date capabilities in its CLOCK
extension. Once this is loaded and initialized with SET-TIME and
SET-DATE , a still fancier blocks-printing routine called TLISTS becomes
available. It is a truly professional way to document your programming,
complete with date and time on a page-numbered title-line. An example
follows:

12 25 81 SET-DATE 14 32 45 SET-TIME 5 MARGIN !
PCRT 20 45 :R TLISTS PAGE CRT

TINDEX is a similar utility for combining the same title-line with
INDEX, TINDEX and TLISTS reset the page number to 1 as they begin
their count. If you prefer to continue numbering where you left off, use
+TINDEX and +TLISTS, instead. You can start these at a page number of
your choice, by storing the desired number into TPAGE before calling
them. Unless you are sure you have completed a page, you should ecall
0TPAGE first, to re-zero the program's line counter:

0TPAGE 12 TPAGE ! PCRT 30 10 +TLISTS PAGE CRT

will print a titled Page 12 and consecutively number following pages as
needed, for blocks starting with Bloeck 30, When it is done, it will
considerately PAGE the printer to the top of the next sheet.

MMS thoughtfully provides a title line in the CLOCK utility; you can
use it to print out an elegant listing of our system. Initialize the CLOCK
settings as outlined above, then type in this line:

PCRT 15 72 :R TINDEX PAGE 73 131 :R +TINDEX PAGE CRT

This will produce a neat, titled Index of the TRS-80 Model IIT block
headings for your reference. Note that empty, formatted blocks and blocks
filled with machine code will be listed as empty.

Would you like a complete listing of the MMSFORTH source code on
your diskette? If so, insert a lot of paper and plan to go off for lunch!
Start with just a few blocks anyway, for practice. Now, consulting the
new Index we just printed above, specify an appropriate range of block
numbers which may differ from this example:

PCRT 15 117 :R TLISTS PAGE CRT (for TRS-80 Model III)
PCRT 20 136 :R TLISTS PAGE CRT (for IBM PC)

We had to start the second page of the Index with +TINDEX, but
notice that TLISTS, which knows you are sending it regular blocks of 16
lines each, inserts carriage returns in the right places to do this itself.

Copying, Loading & Printing / 3-11

You may prefer not to list your own source blocks as copyrighted by
MMS (and MMS may prefer it, too!). For regular use, just change the
final line on the CLOCK blocks so your text follows TITLE. But if you
are just dashing it off, you can reset TITLE as you go:

TITLE This is my OWN source code! (Enter)

That's all, it's ready to go for your TLISTs or TINDEXes or whatever!
Note that TITLE's maximum phrase length, less the date and time
information, is limited to 42 characters unless you change the source
code,

A final trick for your printer: load MMSFORTH's SCREEN-PRINT
extension for some sereen-printing fun! Now you can press Alternate-* on
the TRS-80 or Shift-PrtSe on the IBM PC to print a "snap-shot" of the
current screen, Try this for documenting some of your initial Forth
experiments for later analysis.,

If your printer can print the computer's graphics characters, see the
SCREEN-PRINT source block for the appropriate modification. Otherwise,
graphics characters will be printed as dots by SCREEN-PRINT, and as
blanks by the other MMSFORTH routines.

If you are using a TRS-80 Model 1 without hardware lowercase
modification, you're out of luck; SCREEN-PRINT won't work,

EXERCISE
Blank Lines 1 through 15 of your practice screen.

Add the conventional phrase to the first line that will
make this sereen a sample overlay.

Using such Forth words as the arithmetic operators
(Table 1), the stack manipulators (Table 2), and others
“from Appendix A, create at least three new words,

Enter your definitons of 2DUP and the new words into
the practice screen,

Review Table 5, "Editing Conventions,” and check the
screen,

Load it,

Test and debug it.

Data Declarations / 4-1

4.0 DATA DECLARATIONS

Frequently it is useful to set aside cells in memory to reserve
constants, variables, and arrays. There are a series of words in Forth
that allow you to allocate these types of data structures, This chapter
discusses the appropriate commands.,

4,1 SIXTEEN-BIT (SINGLE-PRECISION) CONSTANTS

If a value is used frequently or if a value is associated with a
specific function, you might want to name it. Often the name is easier to
recall and enter correctly than is the number itself. A named value is a
constant and CONSTANT is the Forth word used to assign dictionary
names to constants, For example, if you are converting miles to feet, you
can define a CONSTANT named FT/MILE. Thus,

5280 CONSTANT FT/MILE

creates the new word FT/MILE and assigns it the initial value 5280,
whiech CONSTANT found on the top of stack.

After FT/MILE has been defined, you can use it just as you would
5280 to place a value on the stack, That is, if you type FT/MILE, the
value 5280 will be placed on the stack. The phrase:

FT/MILE 3 *

computes the number of feet in three miles, Once a value is defined as a
CONSTANT, its binary value is independent of the current number base,

4-2 / MMSFORTH USERS MANUAL

4,2 SIXTEEN-BIT (SINGLE-PRECISION) VARIABLES

A value which changes frequently is called a variable, The Forth word
VARIABLE names a location whose value is likely to change. For
instanee, you might want a variable to keep track of the number of
customers who have walked into a new store. You can do that with a
statement like:

VARIABLE PATRONS

which means "define a variable named PATRONS, automatically initialized
with a value of zero". (Other versions of 79-STANDARD may not initialize
it to 01)

When you invoke a constant by its name, its value is placed on the
stack, Invoking a variable, on the other hand, places its address on the
stack, After placing the address of PATRONS on the stack, you will
sometimes wish to obtain the contents of PATRONS. The Forth word @
(called "fetch™) replaces the address on the stack by the contents of the
two bytes at that address, To get the current number of customers into
the top of the stack for processing, you write:

PATRONS @

Sometimes you need to examine the contents of a variable, The Forth
word ? (question-mark) puts the current value on the stack and shows it:

PATRONS ?7_0__ok
The word ! (called "store") is used to store a sixteen-bit value into a
location, ! uses the value, which is the second item on the stack, and an

addresss to store into, which is on top of the stack, to alter the
contents of a VARIABLE. If you write,

5 PATRONS !

Forth will store the value 5 into the VARIABLE named PATRONS.
Prove it:

PATRONS ?_5__ ok

To put whatever value is currently on TOS into a specified location,
then, you merely need to specify the address (by name) and invoke the !
operator:

(variable-name) !

The Forth word ' (pronounced "tick", interpreted as "address of...")
can be used to change the value of a CONSTANT:

Data Declarations / 4-3

5000 ' FT/MILE ! FT/MILE ._5000 ok

From this, you can see that CONSTANT and VARIABLE may be used
for the same jobs; but the former is more effieient for putting its value
on stack, the latter for modifying it.

The Forth word +! (called "plus-store") adds a new value to a
variable:

101 PATRONS +! PATRONS ?_106 ok

In the same manner as !, +! increments the contents of the item
whose address is on TOS by the second item on the stack,

To copy data from one place in memory to another, say from the
varisble OLDPATRONS to PATRONS, you can use the sequence:

OLDPATRONS @ PATRONS !

Set up your own variables and use these operators (@ 2?2 ' ! and
+!) until you understand how each works,

One of the surprising aspects of Forth programming is how few
constants or varisbles are needed. Since the parameter stack is used to
hold values which need not be named or need not take up dictionary
space, the need to define every literal or temporary value as a constant
or varisble is eliminated. Only fundamental parameters in an application
will need dietionary space.

The most common failing of inexperienced Forth programmers is
excessive use of constants and variables, To realize the most value from
your MMSFORTH system, try to be alert to this tendency and resist it.
But also resist piling too many values on stack at once, which makes
managing and visualizing the stack unnecessarily difficult,

4-4 / MMSFORTH USERS MANUAL

4,3 BYTE (CHARACTER) VARIABLES

Just as @ and ! transfer data in sixteen-bit units between the stack
and memory, the Forth words C@ ("character-fetch”) and C!
("character-store") transfer data in eight-bit, single-character bytes.
Eight-bit numbers occupy the low-order half of a stack entry, C@ fetches
a single byte from the location specified by the TOS and puts a zero into
the high-order byte (to fill out the stack entry). C! takes the low-order
byte of the second stack item and stores it into the byte addressed by
the top item, deleting both items from the stack, C?
("character-questionmark") is the one-byte equivalent of 2,

As one might expeet on eight-bit microprocessor systems, the
character fetech and store operations are both faster and more
conservative of memory than their sixteen-bit counterparts. This makes a
noteworthy difference between Forth and other high-level languages., Forth
does not discriminate between data types by context but rather by the
operators that are used fo manipulate the data, Thus a sixteen-bit named
variable could contain either two characters of a word, or two eight-bit
binary numbers (such as a byte vector), or a sixteen-bit binary number,
Its usage depends upon the operators that you choose to manipulate its
data, This method produces more readable definitions, more efficient
execution, and more flexible programming,

Single-character constants and variables can be declared in a manner
similar to their sixteen-bit counterparts by using the Forth words,
CCONSTANT and CVARIABLE. Just as CONSTANT does, CCONSTANT
needs an initial value on the stack, followed by the name being defined.
And CVARIABLE, like VARIABLE, automatically initializes with a value
of zero, The space used, however, is only one byte wide, which limits you
to numbers in the range 0 to 255. Often this range is more than you
need, If you wanted to keep track of the current channel number to which
a particular TV set was tuned, you could use:

CVARIABLE CHANNEL n CHANNEL Ct!

where n represents the initial channel number, (The number of TV
channels would never exceed 255.)

After a CVARIABLE is defined the operators CQ and C! may be used
on them, Mixing C@, C!, @, ! and +! between definitions is perfectly
legal, Be sure, however, that you understand exactly what result you
intend to achieve,

Data Declarations / 4-5

44 ARRAYS

Arrays of data items are important in many applications. For example,
instead of handling a set of ten different temperature readings as T0, T1,
wey T9, it would be better to use ten successive data elements named
TEMP., Through suitable addressing arithmetic Forth can compute the
requisite element's address. This is more flexible to program as well as
more economical of dictionary space.

MMSFORTH provides an unusually complete ARRAYS extension which
can be loaded into the dictionary as a set, or from which appropriate
lines may be incorporated. It and other optional extensions include one-
and two-dimensional byte-, single-, and double-precision array

capabilities, addressing integer and floating-point numbers as well as
alphanumerie strings.

To utilize MMSFORTH's single-precision integer array capability, load
the ARRAYS extension and enter:

9 ARRAY TEMP

Now TEMP has 10 elements, 0 through 9 (not necessarily initialized to
contents of 0), To reset the contents of the fourth element to 2000:

2000 3 TEMP !

To set Element 8 to twice Element 4:

3 TEMP @ 2* 7 TEMP !

And to display its new value:

7 TEMP ?

Instead of loading the entire ARRAYS source code block, one might
choose to extract just the necessary lines from it, But beginning Forth

programmers are warned that some of the colon word definitions in this
block require the preceding assembler code.

4-6 / MMSFORTH USERS MANUAL

4,5 OTHER MEMORY OPERATIONS

The words ERASE, CMOVE, <CMOVE, MOVE, BLANK, and FILL can
be used to manipulate memory locations.

ERASE is used to zero a region of memory:

address length ERASE

zeroes the region that begins at the address specified, for the specified
length given in bytes. (Some TRS-80 Model I lowercase modifications shift
the displayed values of ASCII Codes 0-31 decimal by 64, causing the
video display to show these 0 characters as @ characters! To the
computer, they are still zeroes.,)

BLANK works similarly, setting the memory area specified to blanks
(ASCII 32).

CMOVE is used to transfer a region of memory to another location:
source-address destination-address #bytes(count) CMOVE

moves the number of bytes specified, beginning at the source address; to
the destination address. The contents of the destination region are
overwritten; the source region remains the same,

<CMOVE (pronounced "reverse-cee-move") takes the same inputs and
works equivalently, except that it moves the bytes starting at the high
end of the range - a necessary maneuver if the source and destination
ranges overlap!

Because they are destructive overwrites into memory (where the
dictionary resides), these words must be used extremely carefully. When a
region of memory is specifically reserved, however, as with arrays or

bloek buffers, ERASE and CMOVE can be used to initialize arrays or to
copy arrays from one place to another.

In the example used above,
0 TEMP 20 ERASE

clears (zeroes) the temperature array.

Data Declarations / 4-7

Defining a second array:
9 ARRAY 2TEMP
and using CMOVE :
0 TEMP 0 2TEMP 20 CMOVE
would copy the array in TEMP into 2TEMP,

MOVE is similar to CMOVE, but moves in 2-byte (16-bit word) chunks,
and its count is a word count.

FILL is the most general way (BLANK and ERASE both use it) of
setting an area to a specified value:

starting-addr #bytes fill-char FILL

EXERCISES

1. Define EXCHANGE to exchange the contents of two
variables, That is, if A and B are variables, then the
result of the command A B EXCHANGE should be to
place the value of A in B and the value of B in A.

2. Define TRANSFER to move data between two arrays of
the same length. (Define a CONSTANT to specify a
length,)

3. Using the arrays defined above, clear the first array and
TRANSFER the initialized array to the second array.

4-8 / MMSFORTH USERS MANUAL

Word

+

ca

Ct

DP

HERE

Table 6 - MEMORY OPERATORS

Example of
Deseription Stack Before
top
Fetches the contents 20000
of the item whose
address is on the TOS.

Stores the 20§ item 3 20000
into the location
whose address is TOS.

Fetches, prints the 20000
contents of the loecation
whose address is TOS.

Increments the 101 20000
location whose address
is TOS by the 20S item,

Places the address
of the following word
onto the stack (Use: ' word).

Fetches a byte whose 20000
address is TOS. The

byte is right-justified

on the stack,

Stores a byte 254 20000
into location whose

address is TOS. Only

right-most byte is stored.

Fetches, prints the 20000
byte in location whose
address is TOS.

Points to next
available byte
in the dictionary,
(DP is a variable,)

Places address of
next available byte
in dictionary on stack.

->

Example of
Stack After

top
257

26712

27014

35024

Word

ERASE

BLANK

CMOVE
&

<CMOVE

MOVE

FILL

Data Declarations / 4-9

Table 6 - MEMORY OPERATORS (cont,)

Example of

Deseription Stack Before ->
top

Zeroes memory at 21200 25 ->
address 20S for
#bytes specified.
(Use: addr count ERASE)
As above, but blanks.
Moves bytes from one 20000 22514 256

location to another:
(source-addr dest.~addr count CMOVE)

As CMOVE, but
2-byte steps.

General form 15360 1024 65

Example of
Stack After
top

IBM PC: Equivalent long-address words, for RAM addresses
greater than 65,535, are provided in the LONG-ADR
Extension (see Appendix A5.10).

Handling Text / 5-1

5.0 HANDLING TEXT

MMSFORTH includes various ways to handle the portrayal of text,
including a STRINGS extension and some built-in words for less
sophisticated operations on words and numbers.

5.1 CHARACTER STRINGS ("dot-quote")

Forth uses the word ,® ("dot-quote") to open a character string of
text, which is closed with the next " or at the completion of the screen,
Note that " must be surrounded by spaces, like any other Forth word;
however, its closing quote is in-line unless a closing space is desired in
the quote itself.

Unlike some versions of Forth, MMSFORTH has an intelligent
dot-quote, That means it is able to determine whether it is in a compiling
definition or the immediate execution mode, and it will adjust for proper
operation in either case, Very intelligent, indeed!

Let's use ," in a simple example:
: HELLO " HI THERE, PROGRAMMER!" ;

Once you have entered (compiled) this new word, test it by entering
HELLO. It works, but notice that the following _ok isn't the most
professional way to set off the line! We can improve its readability with a
terminating CR to force a Carriage Return to a new line for the
offending _ok:

FORGET HELLO : HELLO ." HI THERE, PROGRAMMER!" CR ;
Try this newer definition now. Better?

Let's continue to refine this operation by adding a PAGE command to
clear the display, then using PTC to PuT the Cursor a distance down and
to the right:

FORGET HELLO
: HELLO PAGE 8 20 PTC ." HI THERE, PROGRAMMER!" CR ;

Try it, you'll like it! To see the classiest effect yet, use your
computer display's lowercase characters for the quote, A Shift-Zero on
TRS-80 or CapsLock key on IBM PC toggles you into or out of the
lowercase mode,

5-2 / MMSFORTH USERS MANUAL

5.2 THE STRINGS EXTENSION

MMSFORTH's STRINGS extension contains a powerful set of string
operators which are quite similar to those in Radio Shack/Microsoft
Extended BASIC. But before using them, let's consider how MMSFORTH
views a string in RAM:

A STRING IS UP TO 256 CONSECUTIVE BYTES OF
COMPUTER MEMORY WHICH ARE A COUNT BYTE
FOLLOWED BY THAT MANY BYTES, EACH CONTAINING
THE APPROPRIATE ASCII CODE FOR A CHARACTER IN
THE STRING.

Armed with this valuable information, load the STRINGS words from
your MMSFORTH System Diskette by entering:

EXTENSIONS STRINGS
Now let's create a new string-variable called HELLO:

30 $VARIABLE HELLO

Here we allocated a 30-byte maximum size for the string to be called
HELLO. If you don't create the variable, you won't have anywhere to
store the string, except in PAD on a temporary basis, Now you might use
IN$ to input the string to PAD and thence to HELLO:

IN$ HELLO $!

This is quite a bit like the storing of single-precision numeric
variables, in Chapter 4.

Or, you might use a string-literal to assign the string inside your
program, like this: :

$" Hi there, programmer!” HELLO $!

Always be sure to store the string literal before any other operation
overwrites it in the unprotected "scratchpad" area of computer memory
(called PAD).

Now, we have a string "Hi there, programmer!" consisting of a series
of bytes in memory beginning at an address which is put on stack when
we say HELLO. The first byte of this string contains its length, 22
bytes. You can prove this by entering:

HELLO C?.22 ok

Handling Text / 5-3

or using a fancy STRINGS word, LEN, which, if you add a "dot", does
exactly the same thing itself (a CQ):

HELLO LEN . 22 ok

Printing a string works about like a numeric constant, also. Instead of
the word "dot" it uses the word "string-dot":

HELLO $._Hi there, programmer! ok

The following Forth program is shown in the LIST format, with line
numbers on the left (don't enter them!). It exercises some MMSFORTH
STRINGS words to display any short word in a square format of repeating
lines, with a separator character slicing diagonally through the display.
Try it, modify it, and think about it!

Listing 1 - STRINGS EXAMPLE

0 (06/01/81 STRINGS example for MMSFORTH MANUAL) : TASK ;
1 50 3 LOADS (load STRINGS; may start other than Block 50.)
2 12 CONSTANT MAX-LENGTH MAX-LENGTH $VARIABLE NAME
3 ¢ SIZE-OK? PAD DUP COUNT SWAP DROP MAX-LENGTH >
4 IF [- Pick a shorter word!" DROP 0
5 ELSE 1
6 THEN ;
7 : PRINT-IT BEGIN CR ." Enter what word" IN$ SIZE-OK?
8 UNTIL NAME $! NAME LEN 1+ 0
DO CR NAME I LEFTS$ $. m *n
10 NAME DUP LEN I - RIGHTS $.
11 LOOP CR CR ;
12 : STRING-DEMO BEGIN PRINT-IT ." Again" Y/N UNTIL
- 13 o - OK, see you soon!" 10000 0 DO LOOP CR ;
14 STRING-DEMO FORGET TASK DIR
15

=}

Here is the complete MMSFORTH set of STRINGS words, Consult your
MMSFORTH Glossary (supplied in the additional Appendix materials sent
upon return of your User License Agreement) for further examples of
their use,

$VARIABLE $CONSTANT $! $. $+
LEFT$ RIGHTS$ MID$ INSTR LEN
$COMPARE $XCHG $-TB IN$ $
ASC CHRS$ STR$ VAL

STRING$ INKEY

5-4 / MMSFORTH USERS MANUAL

5.3 "PRETTY" NUMBERS (.R)

Using . and ? , we have been printing numbers as they come, But it
often is desireable or necessary to line up our numbers in neat columns or
otherwise organize their format. The easiest Forth trick for this is R
("dot-R"), which prints the number in a field of the width specified on
TOS. To compare it in action, try each of the following:

: RANGE CR 1+ SWAP DO 1. LOOP ;
: NEAT-RANGE CR 1+ SWAP DO I 4 .,R LOOP ;

Now test each by saying 1 25 RANGE and 1 25 NEAT-RANGE , ete.
See how .R keeps things neat if you plan your column sizes appropriately?
We'll look into that "DO ... LOOP" structure later in Section 6.5,

5.4 MIXING NUMBERS AND STRINGS

Of course one can combine numbers and strings to make compound
words or phrases such as 2-DRIVE SYSTEM, LINE #4:, ete, But to do so
effectively, you must understand that in Forth (MMSFORTH and other
79-STANDARD versions), numbers are printed somewhat differently than in
BASIC: NUMBERS NORMALLY PRINT WITH A TRAILING SPACE BUT
WITHOUT A LEADING SPACE.

Thus, with the number 4 on TOS, we might print "Line #4" like this:

: LINE# " Line #" . ;
4 LINE#_Line #4 ok

However, adding a closing colon to this print-out to show "Line #4:"
introduces a problem:

¢ LINE# ." Line #" . ." :" ;
4 LINE#_Line #4 : ok

which has an unwanted space between the last two characters, The magic
phrase for fixing it is 0 R :

: LINE# " Line #" 0 R ." :" ;
4 LINE#_Line #4: ok
How about that!

Handling Text / 5-5

5.5 PICTURED NUMBER FORMATS (<# # # #>)

This is just a teaser for now., But later in our CHECKBOOK demo
program we will design a special number format, .$$, which displays the
values neatly with dollar signs, two digits to the right of a decimal
point, etc. Forth can create as many special pictured number formats as
you like, but you must remember that they expect double-preecision inputs

from the stack.

Conditional Branches and Loops / 6-1

6.0 CONDITIONAL BRANCHES AND LOOPS

Many definitions execute words (made up of other definitions), one
right after another, However, it is often necessary to alter the way in
whiech words are executed in a definition so that the routine may respond
differently to different input conditions without being re-typed. This is
accomplished by using the Forth structures for loops and conditionals.
Loops cause a sequence of words to be repeated a specified number of
times; conditional structures allow the application to choose a sequence of
words based upon a given test (or condition). The following words compile
logic which alters the execution of words within a definition:

IF ... ELSE ... THEN

DO .. LOOP or DO ... +LOOP

BEGIN ... UNTIL

BEGIN ... WHILE ... REPEAT

ACASE O..." S8E SO0 S¢S see OTHERWISE 268800 CASEND

NCASE . o 9 " °9® see soe OTHERWISE *08000 CASEND
IMPORTANT: NO loop or conditional structure can be executed directly
from the keyboard without being included inside a definition. The control
words listed above are designed to compile appropriate logic control and
thus are meaningless if used outside a definition,

Remember this rule:

RULE 6: COMPILING WORDS MUST NEVER BE USED
OUTSIDE A DEFINITION.

This chapter contains discussions of various conditional structures,
loops, and related matters, Each discussion is capped by appropriate
exercises,

6-2 / MMSFORTH USERS MANUAL

6.0 CONDITIONAL BRANCHES

Three compiling words, IF, ELSE, and THEN are used to compile
conditional branches in a definition. In Forth, conditional branches examine
the top of the stack to decide which branch wil be taken., A conditional
branch has the following structure:

: DEFINITION condition IF this ELSE that THEN continue ;
where:

¢ DEFINITION

condition Places a condition (non-zero/zero) on stack,
IF Removes and tests the number on stack,
this Executes "this" if the number was
non-zero (true).
ELSE
that Executes "that" if the number was zero
(false),
THEN
continue ; Continues from both lines,

IF marks the place where the top of the stack is popped and
examined; if the value is non-zero, everything up to ELSE is executed -
at ELSE, execution skips to THEN. On the other hand, if the stack value
is zero everything up to ELSE is bypassed and everything after ELSE up
to THEN is executed,

RULE 7: EVERY]F MUST BE FOLLOWED BY A THEN.

For example, you could print non-zero numbers if you defined
NON-ZERO in this manner:

¢ NON-ZERO
DUP Duplicates the number.
IF Tests and diseards the top number,
. Prints it if it is non-zero.
ELSE DROP Otherwise drops it,
THEN ;

It was necessary to DUP the number on the stack prior to the test
because IF removes the number it tests,

Conditional Branches and Loops / 6-3

The ELSE clause is optional. For example, to inerement the TOS only
if it is non-zero, you can define INC:

¢ INC
DUP Duplicates the number to save it,
IF Tests it,
1+ Inecrements it if it is non-zero.
THEN ;

The truth value on the stack is often the result of a comparison that
uses one of the Forth words, <, >, or =, These operators test the top
two stack items for the relations "less than," "greater than," or "equal
to," respectively. <= ("less than or equal to"), >= ("greater than or equal
to"), and <> ("not equal to") are also supported in MMSFORTH. Each
removes the top two items which it tests, leaving one for true and zero
for false. (Review Table 2.)

< Leaves one if the 20§ item is less than TOS.
= Leaves one if the 20S item equals the TOS.
> Leaves one if the 20S item is greater than TOS.

The comparison operators observe the same Forth convention of
Reverse Polish Notation that arithmetie operators do, All Forth operators
retain their conventional meaning., Thus,

9 5 < is the same as 9<5 i.e., false,
4 2 > is the same as 4 > 2 i.e., true,

For example, suppose an input data item (placed on stack by INPUT)
is to be regarded as either a decimal digit (if it is < 10) or as a code

for an analog function (if it is >= 10)., Then the definition:

: DECIDE INPUT DUP 9 > IF DO-FUNCTION
ELSE DIGIT ! THEN ;

either does the analog function if the INPUT is greater than nine or else
saves the value in the variable DIGIT.

6-4 / MMSFORTH USERS MANUAL

Two additional comparison operators are 0< and 0=, which may be
defined:

0< 0
0= 0

<3

e
9

to test for negative or equality to zero, respectively. (Actually 0< and 0=
are defined in machine code while <, >, and = are defined in terms of
them,) These operators also replace a single argument by a truth value.

To negate a condition, use the Forth word NOT, which replaces zero
by one, and replaces any non-zero value by zero. Because this is identical
to the action of 0=, the definition of NOT is just:

¢ NOT 0= ;

In the following example we include a specific test for zero before
storing a data item:

: ITEMS DUP IF DATA ! ELSE DROP THEN ;

where:
: ITEMS (The upper limit is on the TOS at entry.)
DUP IF Tests for the non-zero upper limit., ‘
DATA ! Stores the value into the variable DATA
if it is non-zero.
ELSE DROP Discards any unwanted zero,
THEN ;

Since it is common to ignore zero values during an operation, Forth
provides the word ?DUP, It duplicates the TOS only if it is non-zero.,
Using ?DUP, the definition of ITEMS becomes shorter:

: ITEMS ?DUP IF DATA ! THEN ;

In other words, ?DUP eliminates the use of the phrase ELSE DROP,
The definition of ?DUP, by the way, is just:

: ?2DUP DUP IF DUP THEN ;

Conditional Branches and Loops / 6-5

6.2 COMBINING TRUTH CONDITIONS

Sometimes it is useful to combine several truth values, For instance,
you may want to execute statement X only if both parameters on the
stack are non-zero., Although this is a trivial example, it serves to
demonstrate that two conditions can be met in one definition, The logical
operators found in Table 2 are used in combining truth definitions.

The word AND performs a logical AND of the top two stack items (bit
by bit). This ecan be used to define compound conditions, For example, if
FROM and TO are constants, then you can define BETWEEN:

: BETWEEN
FROM OVER < Compares the number with FROM .
SWAP Swaps the truth value with the number
to be tested.
TO < Compares the number with TO .
AND ; Takes the AND of the two truth values,

BETWEEN determines if the top stack item is between FROM and TO,
exclusive,

MMSFORTH also supplies an OR word, even though the logical OR
function can usually be handled by addition,

Truth velues are reelly no different from numbers and may be used
arithmetically. Consider this example, which computes (the characteristic
of) the base-ten logarithm of a number:

: LOG
DUP
10 >= Leaves one if n >= 10,
OVER 100 >= Leaves one if n >= 100,
+ Adds the running sum of the truth values.
OVER 1000 >= Leaves one if n >= 1000,
+ Adds to the running sum,
SWAP 10000 >= Leaves one if n >= 10000,
+ 3 Adds to the running sum,
EXERCISE

1. Given the constants FROM and TO, define a word named
OUTSIDE that will leave true on the stack if the top
item does not fall between FROM and TO.

6-6 / MMSFORTH USERS MANUAL

6.3 INDEFINITE LOOPS (BEGIN and UNTIL)

All loops are govérned by the values on the stack, Here is the
structure for an indefinite loop (words in lower case represent your
application's named and tested definitions):

: EXAMPLE BEGIN process condition UNTIL continue ;
where:

: EXAMPLE Creates a dictionary entry for the new
word, EXAMPLE,
BEGIN Marks the beginning of an indefinite loop.
process Defines the action(s) to be executed
one or more times,
condition Leaves a truth value on the stack, either
zero for false or non-zero for true,
UNTIL Pops the value off the stack, returning
to BEGIN if the condition is zero.
continue ; Continues execution after the loop ends.

BEGIN marks the beginning of the loop. The body of the loop (here
indicated by the words "process" and "condition") is executed each time
through the loop. The body of the loop must leave a numeric value on top
of the stack; that value is examined each time the UNTIL statement is
reached, If the value on top of the stack is zero (false), the loop is
repeated; to terminate the loop, any non-zero value (true) is placed on
the stack., Thus, loop repetition is directly under program control. When
the loop is ended, the word following UNTIL will be executed. UNTIL
removes the number it tests from the stack.

Suppose #ARRAY is the starting address of an array of sixteen-bit
entries containing at least one non-zero entry. You can find the address
of the first non-zero entry by the loop:

s FIND#0 #ARRAY 2- BEGIN 2+ DUP @ UNTIL ;
where:

: FIND#0
#ARRAY 2- Decrements the array address by two.
BEGIN Begins an indefinite loop.
2+ Increments the address by two.
DUP @ Fetches the contents while saving the address,
UNTIL ; Ends the loop at the first non-zero entry.

Conditional Branches and Loops / 6-7

In the body of the loop, 2+ increments the address on the stack before
the examination of the contents of the address, Consequently, you must
decrement the address #ARRAY with the phrase 2- before entering the
loop. The loop terminates when a non-zero entry is found., Notice that
DUP preserves the address on the stack during the loop and that, once
the loop is complete, the last address remains on the stack,

It is possible to create a simple program that will execute forever:
: FOREVER BEGIN whatever 0 UNTIL ;
The zero preceding UNTIL guarantees re-execution of the loop body.
Often you will wish to execute some phrase a specified number of
times (say, ten). That can be done by writing this BEGIN ... UNTIL

sequence:

: TEN-TIMES 0 BEGIN phrase 1+ DUP 10 = UNTIL DROP continue

;
where:

: TEN-TIMES

0 Places a counter on the stack.
BEGIN '
phrase Provides the action(s) to be repeated.
1+ Increments the counter,
DUP 10 = Tests for equality to ten,
UNTIL
DROP ~ Discards the counter.

continue 3

Initially, the top of the stack is zero; after the body of the loop (the
useful work) is performed, the counter at the top of the stack is
incremented and compared to ten, If ten has been reached, the UNTIL
word will cause control to "drop through"™ to the next word without
performing again (unlike BASIC). Otherwise, control will return to the
BEGIN at the start of the loop.

Notice that there are seven words that must be executed (five of them
repeatedly) to implement this loop. Also, if the body of the loop needs to
add or remove successive items from the stack, the counter at the top of
the stack must be accounted for and operated around., In this case a
controlled loop would serve your purpose better. Controlled loops are
discussed in Section 6,5, after consideration of the return stack, which is
frequently needed for the initialization of controlled loops as well as
other operations,

6-8 / MMSFORTH USERS MANUAL

6.4 THE RETURN STACK

As explained in Chapter 1, all Forths use at least two stacks. The
most visible ,stack is the parameter stack, which is used to manipulate
parameter values and memory locations. The second stack, the return
stack, is used primarily for program control, Values saved on this stack
include return addresses for colon definitions and counters for controlled
loops. The two stacks segregate parameters from program control values
so that Forth code is both more readable and debugged easily.

Forth's use of the two-stack architecture came about because of the
hazards inherent in conventional single-stack programs in which
parameters, program addresses, and other control information are all
combined together in the same stack. In such a system, operations that
should only be concerned with parameters must keep track of other entries
in the stack, When two stacks are used, parameters and return addresses
need never be confused,

There are occasions, however, when something on one of the stacks
would be useful if available on the other or when one component of a
definition requires one or more numbers that would otherwise be buried in
the parameter stack, The basic FORTH vocabulary therefore includes three
important words for transferring data from one stack to another:

>R Pops a number off the parameter stack and pushes it onto
the return stack,

R> Pops a number off the return stack and pushes it onto
the parameter stack,

R@ Copies the number that is on the top of the return stack
and pushes it onto the parameter stack, without changing
the return stack, (See Section 6,5 for an example of
usage).

>R and R> enable you to use the return stack as an auxiliary stack.
For example, you may transfer a number to the return stack prior to a
calculation which makes heavy use of the parameter stack, Since the
number is on the return stack, you can feteh it back without disturbing
the parameter stack, Judicious use of >R and R> can make definitions
more readable,

Because the return stack is primarily used to hold control values,
there are two important constraints on your use of it, the first of which
is given here, Since the second constraint concerns DO ... LOOPs, it is
given as Rule 9 (in Section 6.6).

Conditional Branches and Loops / 6-9

RULE 8: ANYTHING PUSHED ONTO THE RETURN STACK
MUST BE REMOVED WITHIN THE SAME DEFINITION.

For example, if you define CRASH this way:
: CRASH 0 >R ;
and then try executing CRASH, you will crash because the number placed

on the return stack by >R will be used by ;3 as a return address, with
fatal results, On the other hand,

¢ HARMLESS 0 PR BEGIN 1 UNTIL R> DROP ;
is indeed harmless,

Sometimes it's a little difficult to remember which of the two, >R or
R>, transfers data to the return stack, Forth attempts to keep frequently
used words short to avoid lengthy manuseripts. The pictorial value of
these two words is intended to suggest moving data onto (>R) or off of
(R>) the return stack.

You should develop the habit of referring to the MMSFORTH Glossary
(Appendix A9, available to licensed users) when you need a reminder of
the definition of any MMSFORTH word,

It is worthwhile to pause here long enough to work out what will
happen if you try to use a formation like:

«» >R phrase R@ phrase R> ...
within a definition., Since >R moves the top parameter stack item to the
return stack and R@ copies the item back onto the parameter stack, this
construet results in leaving the parameter stack with a duplicate set of

what was formerly its top item, This is a useful way to get a temporary
"eonstant”,

EXERCISE
Use >R and R> to define 2SWAP, to swap the first two
byte pairs on the stack with the third and fourth pairs,
That is, after:
12345 2SWAP

the stack should contain:

14523 (with 3 on the top).

6-10 / MMSFORTH USERS MANUAL

6,5 CONTROLLED LOOPS (DO, LOOP and +LOOP)

MMSFORTH, like many other versions of Forth, uses the Return Stack
to store the loop index (I) and the limit values used in controlled loops.
So in MMSFORTH, I is equivalent to RA@,

An alternate definition for TEN-TIMES (from Section 6.3) makes use of
the DO ... LOOP construct:

: TEN-TIMES 10 0 DO phrase LOOP ;
where:

¢ TEN-TIMES

10 0 Places the loop parameters on the stack.
DO Transfers the loop parameters to the
return stack.
phrase
LOOP ; Repeats the loop ten times,

The first two numbers are, as always, placed on the stack (first 10,
then 0). The 10 becomes the limit of the DO ... LOOP; the 0 becomes the
initial value of I, the loop index. The loop will execute ten times with
the index starting at 0. The DO word causes the two top words on the
stack to be transferred over to the return stack; that gets the loop
parameters off of the parameter stack, After the body of the loop is
executed, LOOP will increment the index and compare it with the limit, If
the index is less than the limit, the loop is repeated. If the loop limit
has been reached or exceeded, the two values are removed from the
return stack and the next word (following LOOP) is executed. Because the
test comes at LOOP, a DO .. LOOP will always be executed at least
onece,

Conditional Branches and Loops / 6~11

Sometimes it is useful to have access to the loop index in a DO ...
LOOP, The Forth word I, which can be thought of as Index in the DO ...
LOOP construct, fetches the top of the return stack (where the loop
index is stored) and copies it onto the parameter stack without affecting
the return stack. To print out ten numbers, from 0 through 9, use this
sequence:

: HANG-TEN 10 0 DO I . LOOP ;

where:
: HANG-~TEN
10 0 DO Transfers the loop parameters to the
return stack,
I Copies the loop index (0, 1, 2, ey 9)

to the parameter stack,
. Prints out the loop index from TOS.
LOOP ; Increments the index (on the return stack),
compares, repeats ten times,

Notice that DO .. LOOP structures, like those using BEGIN ...
UNTIL, cannot be executed in the immediate mode; they must appear only
in definitions of other words,

The loop index and limit don't have to be specified in the definition,
They may be the result of prior computations or other stack
manipulations, just as long as they are on the stack when DO is
executed. Frequently, a definition that uses a loop requires the upper
limit of a loop to be specified. Suppose, for example, you have a word
called READ which reads a single data item from a device and stores it
in the next sequential location of an array. You could then define ITEMS :

: ITEMS 0 DO READ LOOP ;

To read ten items, then, you would fype the desired number of
readings before typing ITEMS :

10 ITEMS

The 10 would be on the stack when ITEMS was executed and would
serve as the upper limit for the loop.

It is important to remember that any loop will be executed at least
one time because the increment-and-test function is at the end of the
loop. It is not possible to execute a loop zero times, only one or more.

6-12 / MMSFORTH USERS MANUALV

Here's another look at the DO ... LOOP we saw in Chapter 5. It
counts between two, numbers:

: RANGE CR 1+ SWAP DO 14 .R LOOP ;

where:
: RANGE
CR Outputs a carriage return and line feed
for a new line.
1+ Increments the last number, to inelude
it within the loop.
SWAP DO Arranges loop control and begins the loop.
I Copies the loop index to the parameter stack.
4 R Prints TOS, right-justified in a field 4 bytes
wide,
LOOP ; Repeats the loop until done.

Then the command,
4 40 RANGE

will display a count from 4 through 40, neatly displayed in uniform
columns across the line. This example illustrates the useful phrase 1+
SWAP, used to convert an inclusive range of numbers in increasing order
to the parameters expected by DO. (The phrase OVER + SWAP can be
usec; in a similar manner to convert a start and count into parameters for
DO.

Another word used to conclude loops begun with DO is +LOOP, +LOOP
expects a number on the stack, which it adds to the loop index before

comparing the index and limit. For example, a word called EVEN may use
+LOOP to print even integers ranging from zero to a specified limit:

: EVEN 0DO I. 2 +LOOP ;

The value 2 placed on the stack before +LOOP is used as the
increment to the index, so that the index steps through successive even
values., In MMSFORTH, +LOOP will accept negative increments and can

count across the zero "boundary". More complicated uses of +LOOP
involve computing the increment for +LOOP in the body of the loop.

In use, EVEN produces the following result:

10 EVEN_0 2 4 6 8 ok

2.

Conditional Branches and Loops / 6-13

EXERCISES

Define SUM to add the contents of a single-precision
array, given its starting address and length on the stack.

Define POWER so that m n POWER computes the n-th
power of m, for non-negative n,

6-14 / MMSFORTH USERS MANUAL

6.6 NESTING STRUCTURES

DO .. LOOP and IF ... ELSE ... THEN sequences may contain other
such sequences but only if they are properly nested. That is, one entire
DO .. LOOP pair may be inside another pair but they may not overlap.
The following loops, printed vertically for clarity, print out number pairs
in the order (1 1), (1 2), (1 3), ..y (5 3), (5 4), (5 5)2

¢ PAIRS

6 1 DO Counts from one to five (major loop).

I Fetches the major count value,
6 1 DO Counts from one to five (minor loop).

DUP . Duplicates and prints the major loop.

SPACE Separates the two pairs with an extra space.

I. Prints the minor loop.

CR Types a carriage return.

LOOP

DROP Discards the old major count value,
LOOP ;

This definition of PAIRS has one DO .. LOOP construction nested
within another. This brings us to the second nesting rule:

RULE 9: WHEN NESTING STRUCTURES IN FORTH, YOU
MUST NEST EACH STRUCTURE COMPLETELY WITHIN ANY
'OUTER STRUCTURE.

For example, you may not use IF to branch into or out of a loop or
another conditional,

Another example of nesting is provided by a different definition of
EVEN (Section 6,5). This EVEN performs as the first did but in addition
assures that the limit is not zero:

: EVEN ?DUP IF 0DO I. 2 +LOOP THEN ;

where:
: EVEN
?DUP IF Checks for a non-zero limit,
0 DO
1. Prints the even index value,
2 +LOOP Increments the loop counter by two.

THEN ;

Conditional Branches and Loops / 6-15

The complexity of the actions taken on either branch of an IF ... ELSE
e THEN or within a DO .. LOOP structure is virtually unlimited. For
example, a complete IF .. ELSE ... THEN structure may be used within -
an IF branch as in this definition of NEXT, which stores a number into
the next empty one of three locations, given the number and the first
address on the stack:

: NEXT
DUP @ Fetches the contents of the first location,
IF Tests it for zero.
1+ DUP @ Feteches the contents of the next location.
IF Tests for zero.
1+ Increments to the last location,
THEN
THEN
ts Stores the number in the first,

second, or third location.

Here we have nested one IF .. THEN structure entirely within
another. This conforms to Rule 9 given above: when nesting structures in
Forth, you must nest each structure completely within any outer structure.

EXERCISES

1. How would you define MAX, MIN, and ABS? (All are
supplied as part of standard Forth.)

2. Define FACTORIAL to compute the factorial of a number,

6.7 RECAPITULATION

The words IF .. ELSE .. THEN, DO .. LOOP, DO ... +LOOP, and
BEGIN .. UNTIL, are all compiling words (like the more advanced ones
listed at the beginning of this Chapter). That is, they direct Forth's
compiler to build branches within a definition, which will later cause its
interpreter to re-execute or skip over words in the definition when the
defined word is actually invoked. It is the function of these words to
place items in a definition, Therefore you must conform to Rule 6:
compiling words must never be used outside a definition,

The least that can happen by ignoring this rule is that trash will be
left at the top of the dictionary or stack. The worst is that trash may be
deposited into existing definitions, making them unusable,

Program Development / 7-1

7.0 PROGRAM DEVELOPMENT

In this chapter, we will create several complete Forth programs
instead of minor routines. (At last!) But first, we will discuss the
philosophy Forth imposes on good programming.

71 PROGRAMMING PHILOSOPHY

Understanding the problem you are trying to solve is essential to
writing a successful application., Otherwise, sitting down at the keyboard
is like driving a great distance without a road map - possible, but not
efficient. In order to uncover the essential features of the desired
application, long hours of study may be required. Initial decisions need to
be made about how much existing code will be applicable and how much
to develop afresh. In common business applications, for example, standard
packages may be adopted but a lot of custom requirements will be best
handled in a complete design. If the computer must contact the outside
world, appropriate hardware/software tradeoffs must be considered as
well, Once the requirements are specified and the point of departure is
selected, application design and implementation begins.

There are two schools of thought in programming methodology. The
first holds that you should write your program at your desk, check it
carefully, and then use your computer to implement and test it, The other
school would prefer that you write the program at the computer. You may
choose either (or both), depending upon your skills and willingness to
experiment, Eventually, however, you will need to load in the MMSFORTH
System and start operating.

When the initial application words have been tested, you will probably
edit the source text onto the diskette using the Editor (discussed in
Chapter 2). An application name, such as PROJECT, can be associated
with source text by editing a constant or a colon definition into the
diskette directory. For example,

: PROJECT 80 5 LOADS ;

associates Block 80 with PROJECT; 80 is the first load screen number of
five for the application (which may, in turn, load other screens). Typing
PROJECT will then compile your application into memory for testing,

Your MMSFORTH System supports interactive program development,
When your application is completely debugged, the interactive features,
such as the Editor and the source blocks Search utility, may be no longer
needed, You can delete appropriate sections of code, and reload. At this
point you can also edit with neat commenting on the source blocks, can
shift block allocations for best final configuration, and can merge your
application blocks with a client or customer's MMSFORTH System, Finally,
you may opt to use MMSFORTH's CUSTOMIZE TUtility to reprecompile the

7-2 / MMSFORTH USERS MANUAL

merged code for rapid system start-up, minimum disk usage, and/or
protection of your source code,

7.2 TOP-DOWN DESIGN

Frequently you can sketch out an application in reverse, That is, you
begin by writing tentative definitions of words to perform the major
functions of your epplication. The effort of drafting these definitions will
clarify for you which other words need to be written first in order for
the major words to work. In this way you continue backwards until you
determine what varisbles, constants, and basic "building block" definitions
you will need, Of course, to be loaded your application will have to be
entered, starting with the simplest definitions and building up to the most
complex., But the top-down approach will enable you to identify the most
convenient elements to define. The second example presented in this
chapter will follow the top-down approach.

7.3 TESTING AND DEBUGGING

You will seldom write a complete application at once. It is better to
write and debug a screen or two of source text at a time. You can
compile your new definitions and test them out individually at the
keyboard, checking that they maintain the stack as you desire and
otherwise perform correctly, This facilitates debugging by breaking the
application up into easily tested modules.

A technique that is frequently helpful in testing a partially developed
application is the use of stubs, Stubs are short Forth definitions used
temporarily to define words that the software under test will invoke.
Stubs can be used to simulate the behavior of hardware which isn't
currently connected. Another use that arises with the top-down approach
is the simulation of a basic word before its final definition is written, in
order to debug a word at a higher level.

Program Development / 7-3

7.4 A BEGINNER'S EXERCISE ("PAINT" PROGRAM)

This first program has not been built in the top-down manner. Instead,
it is a step-by-step trip into Forth, suitable for initial experimentation
before wading through the deepest secrets of this MMSFORTH USERS
MANUAL and GLOSSARY. In fact, it makes an excellent demonstration to
your co-workers or computer club, Many will recognize it as the same
"white-out" operation demonstrated in the Radio Shack Editor/Assembler
Manual, but with a vast improvement in the ease of implementation!

We are going to create a new routine based on the Forth word, FILL.
We will do so by using some immediate-execute mode operations, We also
will store the program in an edited block for further modification later.

First, try the word FILL to see how it performs, In your MMSFORTH
Glossary we find that FILL expects three numbers on stack and will fill
the 20S number of bytes starting at the address 30S, with the character
whose ASCII code is TOS. On TRS-80, use it to paint the 1024-character
sereen (starting at RAM location 15360) white with ASCII Code 191 :

15360 1024 191 FILL (Enter)

Note: The IBM Personal Computer varies considerably on this
example., Appropriate source code is included on an upper
block of the IBM System Disk.

Fast, what? But we can make it faster by defining a single new Forth
word to do all except the ASCII code, and then we can use various codes
to get different displays. We will have to get the ASCII code number
from below the others on stack (30S) and rotate it to the top with a
ROT immediately before calling FILL. Before we start, put a special word
at the beginning of your new words, like a bookmark:

TASK 3
PAINT 15360 1024 ROT FILL 3
191 PAINT Enter

»
.
L3
.

Get the idea? If you believe that, we'll tell you another:

: WHITE 191 PAINT ;
: BLACK 128 PAINT ;
: STRIPE 131 PAINT ;

WHITE Enter BLACK Enter STRIPE Enter

Wow! We can even make it flash, like so:

7-4 / MMSFORTH USERS MANUAL

: FLASHES 0 DO WHITE BLACK LOOP ;
5 FLASHES Enter

Hmm, a problem! Forth is so fast that the flashes are ineffective. We
can add a pause routine, but first we will forget the latest word so we
can redefine it with the new PAUSE word pre-defined for use therein:

FORGET FLASHES

: PAUSE 1000 0 DO LOOP ;

FLASHES 0 DO WHITE PAUSE BLACK PAUSE PAUSE LOOP ;
5 FLASHES

e

Why the double pause after BLACK ? Because it looked better, that's
why. Try it yourself, When you've had enough, you can remove these new
words from the top of the dictionary and free the RAM for other uses, by
saying FORGET TASK. Then use these techniques and your Glossary for
other projects,

Now to contemplate that which we have created, Using Forth, we

quickly and easily added special new words for our own tasks to the
existing FORTH vocabulary of the MMSFORTH dictionary. These words are
compiled immediately; that is, their machine code definitions are added to
the dictionary in RAM and they become as useable as the preceding
words., But the source code, the sequence of Forth words we wrote on the
screen, is no longer available for modification or to reload tomorrow
night, To store it, we need an Editor,

As fate would have it, we have a fine Full-screen Editor aboard on
our MMSFORTH system tape or disk. It can be used to create the source
code in a Forth block, from which it can be used, modified and stored to
tape or disk.

The MMSFORTH block is the same size as the TRS-80 video display
sereen: 16 lines (numbered 0 through 15) of 64 characters each, adding
up to 1024 characters or bytes or, as we say in the byte business, 1K.
Your original MMSFORTH System has over 100 blocks of software aboard;
on the Model I 35-track disk, even with both a system and a programs
diskette, there is only one additional blank block on the system disk. For
now, we will build the program in a temporary block, in the computer's
memory. Two block buffers are provided (and there are options for more),
and the actual block numbers presently "attached" to their contents are
up to you and your Editor's COPY function., Taking care to select an
available block number (we'll use 86 in this example), enter the Editor
vocabulary on that block:

86 EDIT

Program Development / 7-5

and clear it by deleting all its lines: hold down the Alternate key (Shift
and Clear keys on the TRS-80) while pressing the D key to Delete lines
with the keyboard auto-repeat function,

Now you have a clean slate on which to create the source code
record, Start by titling your work of art on Line 0, You are already in
the Replace mode, so write:

(MY FIRST MASTERPIECE!)

or some other significant statement., Add : TASK ; near the right end of
this line, In doing so, be sure to leave the last column unoccupied.
That's a good general rule, to avoid load problems resulting from
wraparound (one line running into the next). Then press Enter to move
down to the beginning of the next line. Let's skip a line with another
Enter, just to keep things readable and to leave some room for possible
future changes. On Line 2 (remember, we started on Line 0), we again
can enter:

¢ PAINT 15360 1024 ROT FILL ;

We are still in the Editor's default Replace submode (you can tell by
the shape of the cursor character). Two of the other submodes are Insert
(hold the Insert key or Clear and I together to enter it, and the same
when you wish to return to the Replace submode), and Delete (tap the
Delete key on IBM, or on TRS-80 hold Clear and tap D) to gobble one
character from the right, or continue holding to gobble many characters.
(We will refer to the TRS-80's Clear key as a "control key" from now
on.) The Editor's Insert and Delete functions will come in handy if you
make a typographical error. Experiment, then complete the earlier program
on this block, The Editor has many more tricks up its sleeve, but these
submodes are all you'll need to correct mistakes and to make changes.

When you get the block the way you like, be sure to save it, From the
Editor mode press Alternate S (TRS-80's Shift-Control-S) to Substitute
this version for the prior one in the block buffer (or press Alternate-Q to
Quit it, keeping the prior one). Now it is the new Block 86, or whatever
(you can display the present TRS-80 Block number with Alternate-B). You
can again compile from this source code, by entering 86 LOAD. This time
the source code will still be available in Block 86 when you are through,
Try it out, by entering 5 FLASHES again, But remember that repeated
LOADs will compile more and more copies of your source code into the
limited amount of RAM and eventually may crash the system; then you
will have to reload Forth or, if you are on a TRS-80, you might reenter
it from the ROM BASIC by pressing Break, Reset, and SYSTEM Enter
/19200, We think you will agree that it is safer and easier to FORGET
TASK (the first new word) before reLOADing!

7-6 / MMSFORTH USERS MANUAL

As you get into fancier programming, you will create multiple~-block
programs and Forth's virtual memory will move the modified earlier blocks
out to disk or tape as they are displaced by new text entering the block
buffers., But for now, and for the final two blocks later, if you want to
keep this block move it out to tape or disk yourself with the word,
FLUSH. If you'd rather forget the present contents of the block buffers,
key in EMPTY-BUFFERS to ensure that the virtual memory doesn't flush
them for you later. To FLUSH to tape, you must locate the correct place
on tape, in Record mode., The disk system overwrites that block number
automatically, Be sure you aren't write-protected or PBLK'd (PBLK is
MMSFORTH's software write~-protect variable, which is set to the lowest
unprotected block number).

Now you have created your own Forth program, saved its source in a
Forth block, and saved that block for use tomorrow. Congratulations,
you're ready to GO FORTH!

Program Development / 7-7

7.5 AN INTERMEDIATE APPLICATION ("SIMPLE SIMON" PROGRAM)

We have chosen the implementation of a simple graphics game as a
useful and interesting example. The purpose is not to elaborate any
particular - application but rather to illustrate the programming techniques
and development cycle discussed at the beginning of this chapter.
Additionally, it uses some rather interesting methods to generate sounds,
to scan the keyboard and simulate it on sereen, and to output to a port.
(On TRS-80, 255 OUT goes to the cassette recorder or a speaker, etc.)
Those interested in process control applications will recognize the specifie
usefulness of these routines.

SIMPLE SIMON uses the computer hardware (plus an optional speaker
on TRS-80) to emulate some of the features of a popular children's
electronic game, Instead of the standard game's four numbered buttons we
will scan and use the nine main digits on the numeric keypad. We will
simulate this simplified keypad on screen, flashing a block of light on the
appropriate button when it is "pushed" by the computer or when the real
one is pushed by you. The computer will test your ability to follow a
specific sequence of buttons, adding one at a time until you miss. Then it
will blink your wrong choice repeatedly, tell you how many you did
successfully, and query whether another game will be played. Sound
routines are also provided, synchronized with this action. On the TRS-80,
the sound output can be monitored through your cassette recorder or a
speaker/amplifier, in the manner described for the MMSFORTH System's
BREAKFORTH game,

We recommend that you study these TRS-80 blocks (or the SIMON
Program on the IBM disk) to see what they are about, referring to the
following comments on the more interesting routines., Not all operations
are explained in detail, but the clues are here and you will be able to
work out the rest step by step as you progress through the book and your
own learning curve. Meanwhile, use MMSFORTH's Editor or THE NOTEPAD
to transeribe these blocks onto your own TRS-80 MMSFORTH System (in
any three consecutive blocks) for further study and for the fun of running
the program.

7-8 / MMSFORTH USERS MANUAL

7.5.1 Listing of "Simple Simon" Program

Bloek: 132
0 (06/19/81 SIMON 1 of 3, by David Huntress; MMS mods for V2.0)
1 : TASK ; DIRBLK 13 + LOAD (random numbers)
2 CREATE COMPKEYS 33 ALLOT 143 CONSTANT WHITE VARIABLE TIME
3
4 : TO-SQUARE (key# ASCII-char -> , set cursor & output char)
5 SWAP 1- 3 /MOD 7 SWAP - SWAP 4 * 26 + PTC EMIT
6
7 : PAUSE (delay-count ->) 0 DO LOOP ;
8
9 : TONE (1/2-eycle-delay-count #cycles -> , via cassette port)

10 0 DO 9 255 OUTP DUP PAUSE 8 255 OUTP DUP PAUSE LOOP DROP ;

12 (CODE :DI DI NEXT CODE :EI EI NEXT (disables interrupts)
13 (: TONE :DI TONE :EI ; (for "nicer"™ tones)
14
15 : KEYTONE (key# ->) TIME @ 2* OVER 10 + / TONE ; -
Block: 133

(06/19/81 SIMON 2 of 3, by David Huntress; MMS mods for V2.0)

KEYNUMBER (key# -> key# ASCII-key#) DUP 48 + ;

ISRIGHT (key# ->) TIME @ PAUSE DUP WHITE TO-SQUARE
DUP KEYTONE KEYNUMBER TO-SQUARE ;

ISWRONG (key# ->) 6 0 DO DUP WHITE TO-SQUARE 10 20 TONE
DUP KEYNUMBER TO-SQUARE 12 20 TONE LOOP DROP ; ‘

WO ~ID U W O
L 1]

10 : COMPKEY (round# -> key#) COMPKEYS + C@ ;

11

12 : COMPMOVE (round# ->) 600 TIME ! 0 DO I COMPKEY ISRIGHT LOOP ;
13

14 : YOURKEY (-> key# , input a number from 1 to 9)
15 BEGIN ?KEY 48 - DUP 1 < OVER 9 > OR WHILE DROP REPEAT ; ~->

Block: 134
0 (06/19/81 SIMON 3 of 3, by David Huntress; MMS mods for V2.0)
1
2 : YOURMOVE (round# -> err-flag) 300 TIME ! 0 SWAP 0 DO YOURKEY
3 DUP 1 COMPKEY = IF ISRIGHT ELSE ISWRONG 1+ LEAVE THEN LOOP ;
4
5 : SETOOMPKEYS RANDOMIZE 33 0 DO 9 RND COMPKEYS I + C! LOOP ;
6
7 : DRAWBOARD PAGE 23 EMIT 3 8 PTC ." S I MPLE S I MON™"
8 10 1 DO I KEYNUMBER TO~SQUARE LOOP ;
9
10 : SIMON (, have cassette hooked up for sound)
11 BEGIN DRAWBOARD SETCOMPKEYS 0 (round#)
12 BEGIN 7000 PAUSE 1+ DUP COMPMOVE DUP YOURMOVE OVER 32 = OR
13 UNTIL 11 12 PTC ." You got to Round "
14 12 12 PTC ." Try again" Y/N

15 UNTIL 3 SIMON FORGET TASK PROGRAMS

Program Development / 7-9

7.5.2 Analysis of "Simple Simon™ Program

Because this Forth program has its highest level operations defined
last, building upon the prior definitions, we will read it from the back, or.
"the main act". ‘

Block 134:

Following the final definition, : SIMON, the immediate word SIMON
executes the progam. SIMON's outer BEGIN .. UNTIL loop continues
indefinitely for as many game rounds as are answered with a "Y" to the
"Try again?" query. Then control passes to the FORGET TASK phrase
which removes all SIMON code (including the RANDOM numbers extension
which it caused to be loaded) and to the word PROGRAMS which returns
MMSFORTH's Programs Menu to the sereen,

¢ SIMON

Begins by drawing the three-by~three numbered board, then
sets a random key sequence for the computer to divulge, one
new key at a time, Just before entering the inner of its two
nested BEGIN ... UNTIL loops, it zeroes a move counter on
the stack; this will get a 1+ on each pass through the inner
loop which plays a round. After the losing round, the second
half of the outer loop displays that score and asks if you
want to play agein. A "Y" answer puts a zero on stack for
the final UNTIL, returning to BEGIN, or a "N" ends the
program. The inner loop pauses, makes the computer's move,
awaits and then displays the player's move, compares and
continues if the string of moves agrees.

DRAWBOARD
Clears the sereen, sets the double-width character display
mode, titles the screen and then uses a DO .. LOOP
structure and the KEYNUMBER and TO-SQUARE words to
write each of the 9 keys to the proper place on sereen,

..

.

: SETCOMPKEYS
Randomly fills 33 bytes, the computer key sequence, with
values from 1 to 9 into the COMPKEYS array.

: YOURMOVE
Resets the TIME delay for the PAUSE routine, compares your
latest move to the appropriate one in the COMPKEY array,

and proceeds or complains appropriately.

7-10 / MMSFORTH USERS MANUAL

Bloek 133:

.
.

»

.
e

se

YOURKEY
Accepts your key entry if it is between 1 and 9.

COMPMOVE
Resets the TIME delay for PAUSE, outputs the next computer
key, signals that it is correct and proceeds.

COMPKEY
Gets the next value in the sequence from the COMPKEYS
array.

ISWRONG
Alternates a white flash with the last-input key number,
while beeping the sound quickly to signal an error.

ISRIGHT
Flashes the right key more slowly, with sound to match,

KEYNUMBER
Makes a copy of the keynumber and adds 48 decimal to it to
create the ASCII code which will display it.

Program Development / 7-11

Block 132:

: KEYTONE
Adjusts the tone frequency and number of pulses to normalize
the over-all time of the sound.

CODE :DI
This CODE sequence creates a high-level Forth word to
temporarily disable interrupts. It may be elected by removing
the two left-margin open-parentheses, for a purer sound on
Model III TRS-80's.

CODE :EI
Used with :DIL

¢ TONE
Creates a square-wave sound signal by outputing the TOS
number of 8-pulses and 9-pulses to Port 255, the TRS-80's
cassette port,

¢ PAUSE
Is a simple delay, taking its time from TOS.

: TO-SQUARE
This elegant, specialized routine moves the cursor to the
appropriate spot for any of the 9 keys, then EMITs its
character onto that spot,

TIME
This variable is automatically initialized to 0.

WHITE

EMITting this constant's ASCII code creates the white flash,

CREATE COMPKEYS 33 ALLOT

Labels and reserves space for the 33-byte COMPKEYS array.

DIRBLK 13 + LOAD

: TASK ;

Does a relative load of the Random numbers block, so we
can use RANDOMIZE in Block 134's SETCOMPKEYS routine,

"Bookmarks" the beginning of our task so we ean FORGET it
later,

Advanced Program Development / 8-1

8.0 ADVANCED PROGRAM DEVELOPMENT (CHECKBOOK PROGRAM)

8.1 CHAPTER OUTLINE

This chapter studies the CHECKBOOK program which is delivered with
the MMSFORTH System. This demonstration business program provides an
excellent example for advanced Forth programmers. The chapter consists
of three parts: ‘

1. A brief description of purpose for the CHECKBOOK
program, including a data file layout.

2. A listing of its six source blocks.

3. A detailed explanation, word by word, of the program's
Forth source code.

The latter starts at the highest level of the program, which is defined
last in the six source blocks, and works back through the blocks to the
lowest level words., This "top-down design, bottom-up coding" approach
should be used to create your Forth programs, as well as to analyze
others as we do here,

8.2 PURPOSE

The CHECKBOOK program is designed to provide simple cheeckbook
balancing and reporting capabilities. It implements a simple file structure,
and is menu driven for ease of use. However, note that it is not a
complete, well-implemented business package typical of those
professionally designed by MMS or other custom software houses, In fact,
it took less than a day to design, write and debug this example,

As an advanced-level demonstration, the CHECKBOOK program
exercises Forth techniques for text display, for double-precision integer
mathematics and simple scaling techniques, for formatted numerie display
in dollars and cents, and for one-touch menu selection using both ACASE
and NCASE, MMSFORTH's alphanumeric and numeric CASE statements, Its
file structure provides a model for many other applications.

8-2 / MMSFORTH USERS MANUAL

8.3 LISTING OF "CHECKBOOK" PROGRAM

loek: 112

0 (06/28/81 CHECKBOOK, 1 of 6, plus 2 data blocks at end)

1 (FORGET SCR : DIR BOOT ;3 (for 16K Systems) : TASK ;
2 DIRBLK 3 + LOAD (Double numbers) FORGET T1

3 DIRBLK 10 + LOAD (strings) FORGET RIGHTS$

4 VARIABLE IS VARIABLE IC 2VARIABLE IA 23 $VARIABLE IP$

5 2VARIABLE BALANCE 0 CONSTANT #CKS BLK @ 6 + CONSTANT CHKDATA
6 : ABAL CHKDATA BLOCK ; : A#CKS CHKDATA 1+ BLOCK ;
7 : REC# 0 34 U/MOD CHKDATA + BLOCK SWAP 30 * + 4 + 3

8 : CK# REC# ; : AMOUNT REC# 2+ 3 : NAME REC# 6 + ;

:+ 999-OUT BEGIN 2DUP 1000, D- SWAP DROP 0< IF #S 1 ELSE

10 # # # 44 HOLD 0 THEN UNTIL ;

11 : $, SWAP OVER DABS <# # # 46 HOLD 999-0UT 36 HOLD ROT

12 SIGN BL HOLD #> ; : .$% $, TYPE ;
B-OUT 2 33 PTC ." Current balance" BALANCE 2@ .$%

w

13
14 : FIND? 0 SWAP #CKS IF #CKS 0 DO DUP I CK# @ = IF SWAP 1+
15 SWAP I IS ! LEAVE THEN LOOP THEN DROP ; -=>
Bloek: 113
0 (06/28/81 CHECKBOOK, 2 of 6)
1 : ??DUP DUP FIND? IF DROP 0 1 ELSE 0 THEN ;
2 : GET-CK# BEGIN CR ." Enter check number™ #IN ??DUP IF CR
3 ." That check number already on file" THEN ?DUP UNTIL IC ! ;
4 : GET-PAYEE CR ." Enter payee name" IN$ 23 LEFT$ IP$ $! ;
5 : 10,* 2DUP 2DUP D+ 2DUP D+ D+ 2DUP D+ ;
6 : $#IN BEGIN ."™ ? " PAD 15 EXPECT PAD 1 - NUMBER DROP
7 #PT CQ@ ?DUP IF DUP 1 = IF DROP 10.* 10.* 1
8 ELSE 3 = IF 1 ELSE 2DROP 0 CR ." Redo"
9 THEN THEN ELSE HI# @ 10.* 10.* 1 THEN UNTIL ;
10 : GET-AMOUNT BEGIN CR ." Enter check amount as a positive number
11 " $#IN DUP 0< IF 2DROP 0 ELSE 1 THEN UNTIL IA 2! ; -
12
13
14
15
Block: 114
0 (06/28/81 CHECKBOOK, 3 of 6)
1 : VERIFY BEGIN PAGE CR CR ." 1., Check number " IC @ . CR
2 ." 2, Amount " JA 2@ .$$ CR
3 ." 3. Payee " IP$ $. CR
4 CR ." If everything is correct press (Enter)"
5 CR ." Otherwise type the line number of the data in error ? "
6 BEGIN 1 KEY DUP EMIT
7 NCASE 13 49 50 51 " 1+ GET-CK# GET-AMOUNT GET-PAYEE
8 OTHERWISE CR ." Invalid line number, reenter ? " 1- CASEND
9 ?DUP UNTIL 1- UNTIL ;
10 : CHECKS CR BEGIN ." Enter more checks" Y/N 0= WHILE
11 PAGE GET-CK# GET-AMOUNT GET-PAYEE VERIFY
12 IC @ #CKS CK# ! IA 2@ #CKS AMOUNT 2! IP$ #CKS NAME $!
13 UPDATE 1 ' #CKS +! BALANCE 2@ IA 2@ D- BALANCE 2! REPEAT ;
14 : ENTER-CHECKS PAGE ." Enter check(s) written this month"

15 CHECKS ; -—>

Advanced Program Development / 8-3

o,

loek: 115

0 (01/18/82 CHECKBOOK, 4 of 6)

1 : .$5R >R $, R> OVER - DUP 0 > IF SPACES ELSE DROP THEN TYPE ;
2 : LCKS PAGE ." List of outstanding checks™ CR ;

3 : CONTINUE ." To continue, press" ENTER ;

4 : CK-PAGE 14 /MOD IF 0= IF CONTINUE LCKS THEN 0 THEN DROP ;

5 : OUTSTANDING LCKS #CKS IF #CKS 0 DO I CK-PAGE I CK# @ 4 R

6 I AMOUNT 2@ 15 .$$R 5 SPACES I NAME $. CR LOOP THEN CONTINUE ;
7 : G+AMOUNT PAGE BEGIN BEGIN CR DUP $. ." as a positive number”
8 CR $#IN DUP 0< IF 2DROP 0 ELSE 1 THEN UNTIL

9 CR ." Press (Enter) if correct, else type 'X' ? " KEY

10 DUP EMIT CR 13 = IF ROT DROP 1 ELSE 2DROP 0 THEN UNTIL ;

: DEPOSITS PAGE BEGIN ," Enter deposit" Y/N 0=

12 WHILE BALANCE 2@ $" Enter deposit or interest amount™

13 G+AMOUNT D+ BALANCE 2! REPEAT ;

SERVICE BALANCE 2@ $" Enter service charge" G+AMOUNT

15 D- BALANCE 2! ;3 -—>

oo
b
»e

[y
'S
-

1 : 116

0 06/28/81 CHECKBOOK, 5 of 6)

1 CLOSE-UP #CKS IS @ DO I 1+ CK# 1 CK# 30 CMOVE UPDATE LOOP
2 -1 ' #CKS +!

3 CANCEL PAGE ." Enter number of check to be cancelled" #IN
4 FIND? IF BALANCE 2@ IS @ AMOUNT 2@ D+ BALANCE 2! CLOSE-UP
5

6

7

8

9

[
o
. A~

THEN ;
PREV-CHECKS PAGE ABAL 2@ BALANCE 2! A#CKS @ ' #CKS ! ;
CLEAR-CHECKS BEGIN PAGE ." Want to enter a cleared check”
Y/N 0= WHILE BEGIN CR ." Enter number of cleared check™"
#IN FIND? IF CLOSE-UP 1 ELSE CR
10 ." That check number not found; reenter" 0 THEN UNTIL REPEAT ;
11 : INITIAL-SETUP 0 ' #CKS ! $" Enter current balance"
12 G+AMOUNT BALANCE 2! CR ." Enter outstanding check(s)" Y/N
13 0= IF CHECKS THEN ;

14 : CKEND #CKS A#CKS ! UPDATE BALANCE 2@ ABAL 2! UPDATE
15 FLUSH 1+ ; -—>
Bloek: 117
0 (06/28/81 CHECKBOOK, 6 of 6)
1 ¢ MENU PAGE ." MMSFORTH CHECKBOOK BALANCING DEMO" CR CR CR
2 CR ." 1, Read in prior-session data (BEGIN session here)"
3 CR ." 2. Enter check(s) written”
4 CR ." 3, Enter deposit(s) or interest"
5 CR ." 4, List outstanding check(s)"
6 CR ." 5. Enter service charge(s)"
7 CR ." 6, Cancel check(s)"
8 CR ." 7. Enter check(s) cleared by bank"
9 CR ." 8, Initialize files (BEGIN here, 1st time only!)™"
10 CR ." 9. SAVE session data (END every session here)" ;
11 : CHECKBOOK BEGIN MENU B-OUT
12 14 0 PTC ." Enter desired option ? " 0 KEY DUP EMIT
13 ACASE 123456789" PREV-CHECKS ENTER~CHECKS DEPOSITS
‘ 14 OUTSTANDING SERVICE CANCEL CLEAR-CHECKS INITIAL-SETUP CKEND
15 CASEND UNTIL ; CHECKBOOK FORGET TASK DIR

8-4 / MMSFORTH USERS MANUAL

8.2,.1 Layout of File Data Blocks

ABAL = current balance,

1st block, Bytes 0
A#CKS = number of checks stored,

- 3,
2nd bloek, Bytes 0 & 1,

All bloeks, starting with Byte 4 and repeating every 30 bytes:

Bytes 4 & 5, CK# = check number of stored check.
Bytes 6 - 9, AMOUNT = amount of stored check.
Bytes 10 -~ 27, NAME = name of payee on stored check.

REC# - routine to calculate location of a particular check record, this
routine expects record number on the stack and returns the address of the

record,

0 34 U/MOD Calculates relative position in block
and relative block.

CHEKDATA + Calculates actual block number,

BLOCK Brings that block into a block buffer and
leaves the address of the buffer on the
stack.

SWAP Brings up the relative position.

30 * + Calculates the position based on 30~byte
records,

4 + Adds extra to get past ABAL or A#CKS.

Advanced Program Development / 8-5

8.3 TOP-DOWN EXPLANATION OF THE PROGRAM

Block 117:

CHECKBOOK FORGET TASK DIR
Not part of the program, this immediate statement executes
the program; when you are done, it forgets it and brings up
the program menu (or in a 16K system where the word DIR
has been redefined, it will boot the system).

: CHECKBOOK
The main program routine.

BEGIN MENU ." Enter desired option"
Starts the main loop of the program, prints the menu, and

asks for your choice,

0 KEY DUP EMIT
0 sets up zero on stack for ending UNTIL. (Zero will be
replaced by 1 when choice 9 of the menu is taken, thus the
program will end,) KEY waits for a key to be pressed. DUP
EMIT preserves the key value by duplicating it and prints the
extra to screen,

ACASE 123456789" ..eeee. CASEND UNTIL ;
ACASE is MMSFORTH's alphanumeric CASE statement, If the
key pressed corresponds to one of the characters between
ACASE and "™ , the word between " and CASEND which
corresponds in location to the character is executed. If there
is no match, execution continues after CASEND where UNTIL
finds a zero on stack and returns to BEGIN to ask again.

: MENU 298080008 ;
Clears the screen and displays the menu of operations.

8-6 / MMSFORTH USERS MANUAL

Block 116:

: CKEND
End-of-program routine.

#CKS A#CKS ! UPDATE
Stores number of checks from named area into first data

block positions 0 - 1 (A#CKS) and marks the block as
UPDATEd.

BALANCE 2@ ABAL 2! UPDATE
Stores balance into 2nd data bloek positions 0 - 3 (ABAL)

and marks the block as Updated.

FLUSH 1+ 3
Forces the updated blocks to disk and adds a 1 to the zero

left on the stack to cause UNTIL in CHECK to exit.

: INITIAL-SETUP
Routine to enter initial outstanding checks and current

balance,

0 ' #CKS !
Sets initial number of checks to zero,

." Enter outstanding check(s)" Y/N
Ask for any initial outstanding checks.

0= IF CHECKS THEN
Reversed "truth value" from Y/N and if reply was Y ,
executes the routine to enter outstanding checks.

$. Enter current balance"
Puts message into PAD and puts the PAD address on stack

for later use by G+AMOUNT routine.

G+AMOUNT BALANCE 2! ;
Gets double-precision starting balance and puts it into the

variable named BALANCE .

¢ CLEAR-CHECKS
Routine to remove from file, those checks which have been
cleared by your bank; i.e., deletes records but does not
change the balance. This routine contains two loops. The
outer asks for the checks, the inner makes sure the check is
in the file and, if it is, deletes it and closes up the space
where it was.

Advanced Program Development / 8-7

BEGIN PAGE ." Want to enter a cleared check" Y/N 0= WHILE
Starts the outer loop, clears the scereen, and gives you the
opportunity to get out if you got in by mistake, or when you
are finished. Sets up truth value for WHILE (of BEGIN ...
WHILE ... REPEAT loop.)

BEGIN CR ." Enter number of cleared check" #IN
Starts inner (BEGIN ... UNTIL) loop. Requests the number of
the check to be cleared.

FIND?
Searches through the checks in the file for a check with the
correct number., Leaves a 1 on the stack if found, else
leaves a zero.

IF CLOSE-UP 1
If the check is found, closes up the file over it and leaves 1
on the stack to get out of the inner loop.

ELSE CR ." That check number not found; reenter" 0 THEN
If the check is not found, asks you to reenter and leaves 0
on the stack to repeat inner loop.

UNTIL REPEAT ;
Finishes the inner and outer loops.

: PREV-CHECKS :
Routine to read in the balance and number of checks stored

on the disk,

PAGE ABAL 2@ BALANCE 2!
Clears the screen and moves the balance from the disk into

the variable, BALANCE .

A#CKS @ ' #CKS !
Moves the count of the checks from disk to the constant,

#CKS .

: CANCEL
Routine to delete a check from the file and adjust the

balance by the amount of the check,

PAGE ". Enter number of check to be cancelled" #IN
Clears the screen and requests the number of the check to
be cancelled.

FIND?
Finds the check,

8-8 / MMSFORTH USERS MANUAL

IF BALANCE 2@ IS @ AMOUNT 2@ D+
If found, picks up old balance, picks up relative location of
check, uses it to pick up check amount, and adds the check
amount to the old balance,

BALANCE 2! CLOSE-UP THEN ;
Stores adjusted balance, close up file over check just

canceled, and finishes IF constfruct.

: CLOSE-UP
Routine to compress the file to delete a check.
#CKS IS @
Picks up number of checks in file and relative record to be
deleted.
DO

This loop takes each check record, one by one and moves it
down one record,

I 1+ CK# 1 CK# 30 CMOVE UPDATE LOOP
Gets address of check record corresponding to the loop

counter plus 1 and gets the loop counter. Moves from the
former to the latter for 30 bytes, marks the block for
rewrite, and after doing all, ends loop.

-1 ' #CKS +! ;
Subtracts 1 from the number of checks in the file,

Advanced Program Development / 8-9

Block 115:
: SERVICE
Routine to subtract service charges from balance.
BALANCE 2@

Picks up current balance,

$. Enter service charge" G+AMOUNT
Places request-for-service-charge message into PAD for use
by G+AMOUNT, and calls G+AMOUNT.

D~ BALANCE 2! ;
Subtracts amount of service charge from current balance and
saves back into variable,

: DEPOSITS
Routine to process deposits and interest amounts,

PAGE BEGIN ." Enter deposit" Y/N 0= WHILE
Clears screen, starts BEGIN ... WHILE ... REPEAT loop,
checks that you want to enter a (another) deposit.

BALANCE 2@ $" Enter deposit or interest amount” G+AMOUNT
Picks up the old balance, sets message for G+AMOUNT and
calls it,

D+ BALANCE 2! REPEAT ;
Adds deposit to old balance, resaves in BALANCE, and

closes loop.

: G+AMOUNT
Routine to get positive amount. Address of message is on
TOS coming in, double-precision amount is TOS coming out.

PAGE BEGIN BEGIN CR DUP $. ." as a positive number" CR
Clears screen, starts outer and inner loops, duplicates
address of message to preserve it, then prints held message
and "positive" message.

$#IN DUP 0<
Gets amount, copies high order portion and checks sign for

negative,

IF 2DROP 0
If negative, drops amount, puts zero on stack to repeat inner

loop.

8-10 / MMSFORTH USERS MANUAL

ELSE 1 THEN UNTIL
If positive, puts a 1 on stack to exit inner loop.

CR ." Press (Enter) if correct, else type 'X' 2 "
Verification routine message,

KEY DUP EMIT CR 13 =
Waits for a key to be pressed, duplicates and emits the

duplicate to screen, compares to carriage return (decimal
13).

IF ROT DROP 1
If carriage return, brings up 3rd item on stack (address of

message) and drops it. Leave a 1 on stack to exit outer
loop.

ELSE 2DROP 0 THEN
If not carriage return, drops double-precision number just
read in, and leaves zero on stack to repeat outer loop.

UNTIL ;
Close outer loop.

¢ OUTSTANDING
Routine to list outstanding checks.

LCKS #CKS
Prints heading and gets current number of checks.

IF #CKS 0 DO
If number of checks is not zero, prepares & DO ... LOOP of

the number of checks in the file,

I CK-PAGE
Check the count to see if a new page should be started.

I CK# @4 R
Picks up check number and prints it right-justified in a field

of length four,

I AMOUNT 2@ 15 ,$$R 5 SPACES
Picks up the amount and prints it right-justified in a field of
15 using the special routine .$$R to put in commas and a
decimal point. Prints five spaces following the number,

I NAME $. CR LOOP THEN
Prints the payee name then carriage return, ends the loop

and ends the IF statement.

Advanced Program Development / 8-11

CONTINUE ;
Pauses and waits for Enter to continue,

: CK-PAGE
Routine to check for end of screen,

14 /MOD IF 0=
Checks that count of lines printed is evenly divisible by 14
(remainder = 0) and original number was not zero. (On IBM
PC, 22 instead of 14.)

IF CONTINUE LCKS THEN
. If both of the above were true, than pauses and waits for

the Enter key to be pressed, and after it is pressed, starts
a new screen,

0 THEN DROP
Puts zero on stack, exits inner IF, Drops zero or the number
which would have been used by the inner IF, (Note: this
code could have been ELSE DROP THEN .)

: CONTINUE ." To continue, press" ENTER ;
This routine prints the message and waits for Enter to be
pressed,-

: LCKS PAGE ." List of outstanding checks" CR ;
This routine clears the screen, and prints the heading

message.
: JSSR
Routine to print formatted dollar amount, right justified.
Expects length on TOS and double-precision amount 208,
leaves nothing on stack,
>R $, R>

Puts length of print field on return stack for safe keeping,
formats dollar amount leaving length of formatted data on
stack, and brings length of print field back from return
stack,

OVER - DUP 0 >
Copies formatted length to TOS, subtracts it from field
length, DUPs it to save, and checks if difference is greater
than zero,

IF SPACES
If the difference is greater than zero, prints that many extra

spaces.

8-12 / MMSFORTH USERS MANUAL

ELSE DROP THEN
If the difference is not greater than zero, drops the extra
copy of the difference which is on TOS.

TYPE ;
TYPE the formatted amount.

Advanced Program Development / 8-13

Block 114:

.
.

.

ENTER~CHECKS
Routine to input checks written, taking input from the
keyboard and inserting it in the data file,

PAGE ." Enter check(s) written this month" CHECKS ;
Clears the screen, prints message and calls check entry
routine,

CHECKS
Routine to request check data,

CR BEGIN ." Enter more checks" Y/N 0= WHILE
Carriage return, starts BEGIN ... WHILE ... REPEAT loop,
are-you-finished-entering-checks? message (or verify that
this routine is where you want to be). The following routine
;vill be repeated as long as the operator keeps answering Y
or Yes.

PAGE GET-CK# GET-AMOUNT GET-PAYEE VERIFY
Clears the screen, gets the cheeck number, amount, and
payee, and verifies them,

IC @ #CKS CK# !
Gets check number just inputted from where it was stored
(IC), gets current maximum number of check records, stores
check number in next available location in file,

IA 2@ #CKS AMOUNT 2!
Gets double-precision amount just inputted from temporary
storage, gets current maximum number of records, stores
amount in next location in file,

IP$ #CKS NAME $!
Gets payee name just input from temporary storage, gets
current maximum number of records, stores name in next
location in file.

UPDATE
Marks bloeck as updated for later writing to disk by virtual

file system.

1 ' #CKS +!
Increments current maximum number of records by one.

BALANCE 2 IA 2 D- BALANCE 2! REPEAT ;
Picks up current balance and new check amount. Subtracts
check from balance, and saves, Ends BEGIN ... WHILE ...
REPEAT loop. (Go back to BEGIN .)

8-14 / MMSFORTH USERS MANUAL

¢ VERIFY
Routine to allow operator to double check data just entered
on checks.

BEGIN PAGE CR CR
Begins verification loop, clears screen, and moves down two

lines.

" 1, Check number " IC @, CR
' 2, Amount " IA 2@ .$$ CR
" 3. Payee " IP$ $. CR
Lists the check number, amount, and payee on a formatted
screen, with each line numbered for easy identification.

CR ." If everything is correct press (Enter)"

CR ." Otherwise type the line number of the data in error ? "
Gives instructions to operator,

BEGIN 1 KEY DUP EMIT
Begins input loop, places a 1 on the stack for later use by

the UNTIL, accepts a one-key input, duplicates it and emits
one copy to the screen.

NCASE 13 49 50 51 ¢
Sets up MMSFORTH's numeric CASE statement to look for

carriage-return, 1, 2, or 3,

1+ GET-CK# GET-AMOUNT GET-PAYEE
If carriage return, adds 1 to the 1 on stack to set up for

exit from both inner and outer BEGIN ... UNTIL loops.
If 1, gets check number,

If 2, gets amount,

If 3, gets payee name,

OTHERWISE ." Invalid line number, reenter ? ™ 1- CASEND
If none of the above, prints error message, subtracts one
from the 1 on stack to make it a zero for the UNTIL .

?DUP UNTIL
Duplicates the number on TOS if it is not zero. Ends inner
loop.

1- UNTIL ;

Subtracts 1 from the number on stack. This number will be 2
if carriage return was pressed, or 1 if anything else
happened.

Advanced Program Development / 8-15

Block 113:

: GET-AMOUNT
Routine to input amount for check.

BEGIN CR ." Check amount as a positive number"
Loops until valid amount is entered.

$#IN DUP 0<
Gets double-precision amount in, makes a copy of the upper

portion to check the sign, compares that it is less than zero.

IF 2DROP 0 .
If less than gzero, drops the double-precision amount, and

places zero on the stack for the UNTIL.

ELSE 1 THEN
If not less than zero, keeps the double-precision amount on
the stack and places a 1 on the stack for the UNTIL.,

UNTIL IA 2! ;
When a positive amount has been input, saves it in IA.

: $#IN
Routine to read in a double-precision number, and to scale it
to two decimal places. Scaling is often used on large number
ranges in lieu of bulky and slower floating-point arithmetie,
BEGIN ' 2 "

Starts loop and prints out question-mark to indicate ready to
accept data,

PAD 15 EXPECT
Accepts fifteen characters into PAD.

PAD 1 - NUMBER DROP
Converts data at PAD from ASCII to numeric, Drops the

extra address which NUMBER leaves on TOS.

#PT CQ ?7DUP
Gets the location of the decimal point and duplicates it if it

is non-zero. (#PT will be zero if there is no decimal point, 1
if there are no digits after the decimal point, 2 if one digit
after the decimal point, ete.)

IFDUP 1 =
If there is a decimal point, checks to see if there are no

digits after it.

8-16 / MMSFORTH USERS MANUAL

IF DROP

ELSE 3 =

IF 1

10.% 10* 1

If there are no digits after the decimal point, multiplies the
raw number by 100 (by ten twice) to scale it, Leaves a 1 on
the stack to exit the loop.

If there are digits after the decimal point, checks for two
digits.

If there are two digits, puts a 1 on the stack to exit the
loop.

ELSE 2DROP 0 CR ." Redo" THEN

THEN

If there is any other number of digits after the decimal
point, it is an error. Drops the number and prepares to
re-request it.

End prior IF.

ELSE HI# @ 10,* 10,* 1 THEN UNTIL ;

s 10.%

If there was no decimal point, the number went in as a
single-precision number. Picks up high-order bits from HI#,
and multiplies by 100 (times ten twice) to normalize. Places
a 1 on the stack to exit the loop.

Routine to multiply a number by ten. This is a rather
ingenious method to multiply with addition, It was devised
because M*, MMSFORTH's single-times-double multiply, gives
an undesired triple-precision result. A newer word, D¥*, is in
the MMSFORTH double-precision word set and could be used
instead,

2DUP 2DUP D+

Duplicates the number twice so there are three copies on the
stack, Adds the top two. You now have the original number
208 and twice~the~number TOS.

2DUP D+ D+

2DUP D+ 3

Duplicates twice the number and add it to itself (four times
the number) then adds it to the original number giving five
times the number,

H
Duplicates five times the number and adds it to itself (ten

times the number).

Advanced Program Development / 8-17

GET-PAYEE
Routine to input the payee name.

CR ." Enter payee name" IN$
Requests and inputs payee name,

23 LEFT$ IP$ $! ;
Truncates name to 23 characters and stores it in IP$.

GET-CK#
Routine to input check number and verify it.

e

BEGIN CR ." Enter check number" #IN
Begins input loop, requests and accepts check number.

?27DUP
Checks if same check number already in file. Returns code to
indicate status.

IF CR ." That check number already on file" THEN
If check is already on file, sends message.

DUP UNTIL IC ! ;
Duplicates stack if non-zero, If zero repeats routine, if non-
zero stores check number in IC,

s ?2?2DUP
Routine to check for a duplicate check number.

DUP FIND?
Duplicates the check number to preserve it. Searches the file
for it.

IF DROP 0 1
If found, drops the check number and primes stack for IF
and UNTIL in GET-CK# .

ELSE 0 THEN ;
If not found, primes stack only for IF (the check number will
do the work for the UNTIL).

8-18 / MMSFORTH USERS MANUAL

Block 112:
: FIND?
Compare input check number with all the cheek numbers
currently on file,
0 SWAP #CKS
Puts a zero on the stack and brings up the check number,
Picks up the current number of checks in the file.,
IF #CKS 0 DO
If the number of checks is not zero, sets up for a DO ..
LOOP to look through all the checks.
DUP I CK# @ =

Makes a copy of the input check number, picks up the file
check number pointed to by the loop index, and compares
them to see if they are equal.

IF SWAP 1+ SWAP I IS ! LEAVE THEN
If a duplicate is found, brings the 0 which was put on the
stack at the beginning of the routine up to the top, adds 1
to it (for compare later), puts it back down, and stores the
loop counter at IS. Finally, LEAVE sets the loop counter to
the max for the loop so that execution leaves the loop the

next time LOOP is encountered.

LOOP THEN DROP ;
Closes the loop and the first IF, and gets rid of the extra

copy of the input check number,

B-OUT

Routine to print current balance at top of menu page.

2 33 PTC ." Current balance"
Places cursor at Column 33 of Line 2, and prints message.

BALANCE 2Q .$$;
. Gets current balance and prints it.

: .$% $, TYPE ;
Routine to TYPE formatted balance.

o8

$,

Routine to format balance.

SWAP OVER DABS
Inverts a double-precision number, then copies high order
portion up to top again, Makes the double-precision number

unsigned, (The extra copy of the high order portion will be

Advanced Program Development / 8-19

used later to determine the sign.)

<# # # 46 HOLD : V
Starts formatted output which always works up from low-
order to high-order digit. Converts bottom two digits to
ASCIL Forces a decimal-point (ASCII Code 46) next to left
of the two digits,

999-0UT
Formats remaining digits in groups of three digits, set apart

by eommas,

36 HOLD
Forces a dollar-sign (ASCII Code 36) at left side of the
field.

ROT SIGN
Brings up the extra, signed, portion, pulls the sign off it,

and puts it into the formatted output string to the left of
the dollar sign.

BL HOLD #> ;
Forces a blank in as the rightmost character in the formatted

output and closes the formatting,

: 999-0UT
Routine to format the integer portion of the dollars/cents in
balance,
BEGIN 2DUP

Begins the loop to set off groups of three digits with
commas. Duplicates the number,

1000, D- SWAP DROP 0<
Subtracts double-precision 1000 (designated by the inclusion
of a decimal point) from the remaining double-precision
amount on the stack, then drops the lower portion because
all we are interested in is the sign. Checks to see if it is
negative.

IF #S 1

If negative, finished with the loop; takes the remaining
digits from the number, puts them in the formatted output
string, and puts a 1 on the stack to get out.

ELSE # # # 44 HOLD 0 THEN ,
If positive, the number left is greater than 1000, so places
the next three digits into the formatted output string, then
places a comma (ASCII Code 44) there, and finally puts a
zero on the stack to repeat the loop.

8-20 / MMSFORTH USERS MANUAL

UNTIL 3
Closes loop.

: CK# REC# ; ‘
Routine to find the check number within a record. (At the

beginning of the record.)

1]

: AMOUNT REC# 2+ ;
Routine to find the amount within a record. (At the

beginning of the record plus 2.

.0

NAME REC# 6 + ;
Routine to find the payee name field within a record. (At the
beginning of the record plus 6.)

REC#

Routine to find the beginning of a record.

0 34 U/MOD
Forces the single-precision number on TOS to double-
precision by putting zero on TOS, then does an unsigned
divide by 34 leaving remainder and quotient which will be
used to find the relative block position of the record.

CHEKDATA + BLOCK
Picks up starting block number of file and adds relative block
number to it, then gets the block.

SWAP 30 * + 4 + ;
Brings up the relative record within that block (the remainder
from the divide), multiplies it by the record length, and
offsets it by 4 to get past the balance field which is in the
first four bytes of the block.

A#CKS CHKDATA 1+ BLOCK ;
Defines the storage place for the number of checks in the

file as the beginning of the second block, (First block plus
one.)

ABAL CHKDATA BLOCK ;
Defines the storage place for the current balance as the
beginning of the first block.

BLK @ 6 + CONSTANT CHKDATA
Defines a constant which is six blocks up from the current

block as the beginning of the data area,

Advanced Program Development / 8-21

0 CONSTANT #CKS
Defines a constant to hold the current number of checks.
This is defined as a constant rather than as a variable to
save time and memory, because it is called many more times
than it is changed.

2VARIABLE BALANCE
Defines a double-precision variable to hold the current

balance,

23 $VARIABLE IP$
Defines a string variable of length 23 to hold the payee name

while it is being verified.

2VARIABLE 1A
Defines a double-precision variable to hold the amount while

it is being verified.

VARIABLE IC
Defines a single-precision veariable to hold the check number

while it is being verified,

VARIABLE IS
Defines a single-precision variable to hold the number of the

current record within the file,

DIRBLK 10 + LOAD - FORGET RIGHT$
Loads the STRINGS routines (from ten blocks above the
directory block) and forgets extra portions that are not

needed,

DIRBLK 3 + LOAD FORGET T1
Loads the double-precision number routines (from three blocks
above the directory block) and forgets extra portions that
are not needed,

(FORGET SCR : DIR BOOT ; (for 16K Systems) : TASK ;
Defines the beginning of the program for later FORGETting.
If in a 16K system, remove the (., This will forget the
Editor and a bit more to free enough memory to run the
program and will redefine DIR so that the system will boot
when you exit the program.

Getting Started / Al-1

Al.0 GETTING STARTED WITH MMSFORTH

The instructions in this Appendix section will assume that you are
using a Version 2.0 or 2.1 MMSFORTH System Diskette.

TRS-80 M.l: MMS delivers these MMSFORTH Systems without
lowercase; it is added from the Option Select Block, typically
Block 15 (see Section Al.2). IF YOUR MODEL I TRS-80
DOES NOT HAVE LOWER CASE CAPABILITIES, YOU MUST
USE OUR ALLCAPS UTILITY BEFORE EDITING THE
SOURCE CODE BLOCKS (see Appendix A4.6). Also, although
Model I MMSFORTH Systems and demo programs arrive sized
for 32K RAM, you can adjust them for use on your 16K
Model I by CUSTOMIZing on a Model I with at least 32K
(see Section Al.2.2) or by asking MMS to rewrite your
MMSFORTH System Diskette in this manner,

MMS recommends:

1. Bring up a simple version, before attempting complex
combinations.

2. BACKUP ALL IMPORTANT DISKETTES, AND DON'T
REMOVE THE WRITE-PROTECT TAB ON YOUR MASTER
DISKETTE unless you know what you are doing - MMS
rewrites them for licensed users, at $10,00 plus shipping.
3. Remove diskettes from drives before throwing power
switches on or off. ;
4, Let us help. Don't blame the MMSFORTH until you
have read all the instructions, checked with MMS or a
knowledgeable user, or tried the same action on a similar
computer system, ete,

Al-2 / MMSFORTH USERS MANUAL

Al.l START-UP OPERATIONS

Power up all appropriate switches on your computer system before
installing any diskettes, Then mount your new MMSFORTH System Diskette
in Drive 0 (MMSFORTH counts disk drives, like everything else, starting
at Drive 0) and "boot" the system by pressing the TRS-80's Reset button
or the IBM PC's Control, Alternate & Delete buttons. (You can normally
clear and initialize the system by rebooting in this manner, or with the
MMSFORTH word BOOT. In several seconds, a precompiled version of
MMSFORTH will load, "auto-command" a directory menu, and the Forth
cursor will blink back at you. Reboot and, before moving on to the
directory, halt the video display by pressing Shift-@ on the TRS-80 or
Control-NumLock on the IBM PC as soon as the "Dup-name'" message
appears, Record your MMSFORTH version and serial number on both copies
of your User Licensing Agreement and on the first page of these
instructions, Then press any regular key and the loading operation will
continue, Later, entering DIR will return this directory menu to the
sereen,

Before experimenting further, make a working copy of your system
diskette, MMSFORTH has separate FORMAT and BACKUP commands, which
will prompt you when it's time to swap diskettes, The destination diskette
must be formatted before you do a backup, but you need not bulk-erase;
BACKUP will rewrite on any diskette already formatted by FORMAT,
TRSDOS, NEWDOS, IBMDOS, etc. (But don't forget to remove the
write-protect tab, first!)

If your destination diskette needs formatting enter FORMAT from the
directory menu, Follow with BACKUP when done. (BACKUP will elect a
one-drive routine when appropriate.) If yours is a Model I System, also
backup a copy of the accompanying Programs Diskette.

IMPORTANT!! Now carefully store your original MMSFORTH System
Diskette where it will be available for back-up "insurance" and for
exchange for later versions., All other copies with or without modifications
are for use on your one computer only, not for distribution to others or
for use on multiple computer systems! Also complete, sign and return your
MMSFORTH User Licensing Agreement - it is your passport to legitimate
use, to your copy of the MMSFORTH Glossary and a sample copy of the
MMSFORTH Newsletter, and to continuing support from Miller Microcom~
puter Services and/or your dealer.

Insert your newly backed-up MMSFORTH System Diskette in Drive 0,
reboot, and try out some of the RPN math exercises in Chapter 1 at this
time,

Forth shouldn't be all work and no play. Keep plugging away at the
Chapters in this MANUAL, but also take breaks and try trips of your
own, Start with small trips, to avoid early discouragement from problems
which will seem small when you revisit them later.

Getting Started / Al-3

For some early side trips, we have provided an interesting and useful
series of applications programs on your initial diskette(s). Sneak an early
look at Appendix A3 for lots of ideas in this regard, Try them all,
fiddling with the easy ones but leaving the problems to get sorted out as
you proceed,

We also recommend a side trip into the PAINT program example in
Chapter 7. It is easy and well explained, suited for an early taste of
Forth tricks. Later, remember it as a good starting point for you to show
friends why they, too, might want to buy and use MMSFORTH.

Be sure to take time to stare at the Table of Contents so you will
flip to the right place when.a question occurs, to read the Preface, and

to pay plenty of attention to the RPN arithmetic, stack manipulations, and
Editor exercises in the first chapters, They are the cornerstones upon
which you will build your Forth constructs,

With these tools you will be able to use Forth immediately, to sample
the many techniques MMS has provided, and to review the programming
itself, Filing of your MMSFORTH User Licensing Agreement will bring you
additional information. Then you can subscribe to the MMSFORTH
Newsletter, which will bring you a continuing stream, MMS has a variety
of applications programs available and under development., We encourage
use of these and marketing of other compatible software (provided a new
MMSFORTH System Diskette is properly licensed to the same computer),
Congratulations, you are now ready to "GO FORTH!"

Al-4 / MMSFORTH USERS MANUAL

- Al.2 CUSTOMIZE YOUR MMSFORTH

In addition to the CUSTOMIZE Utility, this section deseribes some
optional changes in source blocks, use of the Option Select Block, ete,
Some combinations of these special features may be incompatible with
each other or with your hardware or application. MMS support for such
features is necessarily limited except on a consulting basis or through
articles in the MMSFORTH Newsletter,

Al2,1 The CUSTOMIZE Utility

The CUSTOMIZE Utility is more completely described in Appendix
A4,7, Your initial MMSFORTH System Diskette may not be set to take
best advantage of your particular hardware combination, because we must
have it arrive at least minimally compatible with a maximum number of
possible combinations, It is easy to customize a copy of your system to
your own taste over a wide range of parameters, These resettable options
may include memory size, low-block write-protect feature (PBLK), disk
drives (number, drive motor start-up delay, individual track size,
individual single/double density format settings on Model III and IBM/M.3
format settings on IBM PC, individual track stepping rates, 1 & 2 sided
drives, etc.), an Auto-command sequence on boot, and more,

To CUSTOMIZE for booting a MMSFORTH System Disk on a Drive 0
with more than 40 tracks, temporarily use a 35- or 40-track drive AND
one of the type you will be using. For example, add an 80-track drive
above a 40-track Drive 0, put a formatted 80-track diskette into it (made
with your 80-track DOS), and use our MMSFORTH master to do a
BACKUP of itself from Drive 0 to the 80-track drive., Alternatively, add a
40~track drive above a 80-track Drive 0, and use your 80-track DOS
special-copy utility (SUPERZAP's BACKUP, etc.) to bring the 35 or 40
tracks of MMSFORTH across to an 80-track formatted diskette. Then,
with an 80-track as Drive 0, you can complete the job with another
CUSTOMIZE.

Also use CUSTOMIZE to reprecompile additional utilities, extensions,
application programs, cursor characteristics, lowercase on/off, and much
more, so they are aboard upon boot. Get to know and use CUSTOMIZE
early on,

Al1.2,2 Some Block Modifications

Most MMSFORTH Utilities and Programs come set for a minimum of
32K RAM, but can be modified and for use in 16K systems, To adjust for
16K RAM, use a 32K or 48K Computer and EDIT out a left paren at the
beginning of Line 1 (not line 0) of each affected utility and program. This
normally FORGETs the Editor and often some more words which are not
needed and free up enough space to permit the 16K application,

Getting Started / Al1-5

TRANSLATE won't fit 16K systems without major pruning, and some
other programs might exhibit similar constraints.

Each time you adjust a block from the original, MMS recommends you
place an asterisk (*) in the space immediately to the right of the date in
Line 0. This provides simple yet prominent documentation in your future
diskette indexes. Change your own block dates upon modification, but
maintain the original dates on MMS blocks for future reference.

Al.2.3 The Option Select Block

As you gain expertise even more can be done by experimenting with
the special features on the MMSFORTH Option Select Block, typically
Block 15 on TRS-80 or Block 20 on IBM PC, MMS has shared these
advanced features with the understanding that they may require unusual
expertise and fine-tuning, which is available from MMS on a consulting
basis, The TRS-80 Model I lowercase keyboard driver is the only such
feature recommended for 16K RAM systems, Other features include
variable number of bloek buffers, various printer-driver options for special
printer capabilities, for using or avoiding the TRS-80 ROM printer-driver,
and for system-level page formatting, an interrupt-driven keyboard with
n-key type-ahead, and an alternate EXPECT which adds Editor-like
features to the keyboard input line,

Once you understand CUSTOMIZE, use Block 15/20 as follows:

1. Using a backup copy of the MMSFORTH System Diskette
without a write-protect tab, boot the system and 15
EDIT or 20 EDIT.

2. Add or remove leading parens and change the number of
block buffers and value of DIRBLK as desired,

3. Press Alternate-S (on TRS-80, Shift-Clear-S).

4, Enter the code from Line 1 (now at the top of sereen)
and press Enter to reprecompile,

5. Complete the CUSTOMIZE operation when prompted to do
so.

Briefly, the Extended EXPECT function permits editing of the keyboard
input line. It is not the Editor, but acts like it, You will have the In-line
Insert, Replace, Delete, Truncate, and right- and left-arrow functions,
Try it to see which controls are aboard, and note that one new one is
there, too: a Alternate-R will Retrieve the last-entered line for re-use or
further editing!

Al-6 / MMSFORTH USERS MANUAL

V2.0's interrupt-driven keyboard option can be overly sensitive to some
operations, so use it with care. It includes a type-ahead function which
buffers up to 80 characters (adjustable) while your computer is otherwise
engaged in disk I/0, processing a CATALOG listing, etc.

V2.1 incorporates an integral type-ahead buffer - on the IBM PC, it is
20 characters in size,

MMSFORTH's variable block buffer feature may be used to add one or
many additional block buffers to your system - if you have enough
available memory. This is a valuable feature for many special operations,

TRS-80: If you have a printer which can print the TRS-80
graphies characters, modify the printer-driver block to send
these, If you use the Epson printer-driver, do not also
modify the screen-printer block similarly or you will offset
the graphics codes by +32 twiee instead of the intended
once! You may opt to bypass the TRS-80 ROM printer-driver

entirely - this permits faster multiple line feeds on some
printers, while others work better with the ROM routine
aboard,

The serial printer-driver provides the above features in an
alternate driver for serial (RS-232-C protocol) printers, Study
its first block to see some of the more obvious adjustments
it offers,

Al.2,4 System Constants

The System Constants Tables in Appendix A12 offer a vast quantity of
additional system adjustments for special applications, The settings of
many of these parameters are critical and will require careful adjustment
by MMS or advanced users,

Getting Started / A1-T7

Al.3 DISK INDEXES

Your MMSFORTH diskette(s) will appear confusing when you first scan
their contents, but you will want to find your way around the source
blocks themselves, to load certain ones, etc, Many references in this
manual give "typical" locations for certain blocks because these locations
may be changed before new manuals are printed, For all these reasons,
you need a handy index of your actual block locations, You can generate
one live on sereen with Forth's INDEX routine. The fancier TINDEX
routine from MMSFORTH's CLOCK Extension has been used to generate a
complete printed index of the System Diskette, It is delivered at the end
of this Appendix, although you will probably choose to move the
appropriate index to a new section, along with a TLISTS of your own, If
you use ours instead of generating your own, be sure to check whether
your disks have any more recent changes,

Al4 DISK REORGANIZATION

Some original MMSFORTH disks are packed very full and will leave
little space for your own programming, For your own regular use, you
probably will want to set up one or more development or working
diskettes which eliminate any source code blocks you will not be needing
for the immediate job, Here is a professional way to do it.

Using these indexes and a sheet of paper, decide what blocks you
want and where you want to put them, Then format your diskettes (at
least a master and a backup), If you have more than one drive you can
move ranges of blocks directly to the new disk using the COPIES Utility;
if not, first backup all information onto the new disk and then use
COPIES to shuffle it about, Use the BCOPY routine (press Break while in
the COPIES Utility) to "smear" a formatted block across all those blocks
you want to show as empty and ready for reuse, (For example, after
using COPY to move an empty formatted block pattern to Block 80, use
BCOPY to COPY onto Destination Block 81 for six blocks, starting from
Source Block 80.)

Forth loads your directory block(s) because its initial definition of DIR
is DIRBLK LOAD . So redefine the constant DIRBLK to the new block
number: n ' DIRBLK ! ., If you have moved the directory and source
bloecks as a unit, the block relative load offsets will still be correect;
otherwise calculate new ones and write them into the direetory blocks, as
well .as commenting on their new absolute block numbers, Note the new
PBLK value (the new lowest unprotected block number -- see Al.5.1),
CUSTOMIZE your new system, and make the backup.

Finally, document your new system with a TINDEX.

Al-8 / MMSFORTH USERS MANUAL

Al,5 OTHER THOUGHTS

This concludes the list of necessary steps for beginning MMSFORTH
and for adjusting the common options to your own preference. But there
are other considerations useful to the beginner, and we will discuss some
of them in this section,

Al,5.1 Bloek Protect

Disk MMSFORTH includes a useful word, PBLK, for software control of
write-protection. By wusing 1it, your system software can remain
write-protected while upper blocks of the same diskette are available for
disk write operations. This feature effectively obsoletes the write-protect
tab on most development diskettes in MMSFORTH, and makes practical
single-disk applications packages which can update files while
safeguarding system programming,

As delivered, your diskette typically protects all blocks lower than
Block 86 (Model I), Block 118 (Model III) or Block 137 (IBM PC). This
protects most of its programs but permits access to the data blocks for
CHECKBOOK and LIFE. Verify this setting with PBLK ? . To change the
protect limit to 32 during use, enter 32 PBLK ! . A like action is
necessary before doing a normal write operation to any bloeck lower than
the current PBLK value. On reboot, PBLK is reset,

To permanently redefine the initial (precompiled) PBLK value on a disk
system, use the CUSTOMIZE routine, (On the MMSFORTH Cassette
System, first redefine PBLK and then save it with a FORTH-DUMP,)

Al.,5.2 RAM Size

The MMSFORTH System Diskette is capable of effective operation on a
single-drive TRS~-80 with as little as 16K of random access memory. Most
of the MMSFORTH demonstration programs do this; some rather large ones
do so by the use of overlay techniques and clever programming, so look
them over carefully and try these techniques yourself.

The main RAM-saving concept is to FORGET parts of the dictionary
which occupy unproductive space. It may pay to move one or two existing
word definitions into your source code, rather than to waste RAM space
for the other words whiech share their blocks. Refer to Appendix 8, a
CATALOG listing of MMSFORTH with full wordnames, to see which words
will be still available after saying FORGET DIR, FORGET SCR, FORGET
DIRBLK, etec. The listing also includes the RANDOM extension's
wordnames, to demonstrate that extensions first FORGET DIR, then are
loaded, and finally load DIR back on top. Additional extensions, whether
called at the same time or later, behave in a similar manner,

Getting Started / A1-9

TRS-80: Radio Shack has recommended that early Model 1
TRS-80's with 48K RAM not use the uppermost 6 bytes of
RAM. MMS continues this recommendation,

Al,5.3 Keyboard Debounce (TRS-80 Model I, only)

Many early TRS-80 Model I's were delivered with poor tolerances
between keyboard contacts. This problem was effectively masked in Level
I BASIC systems but is accentuated by Level II's faster keyboard
routines, which incorporate keyboard roll-over,

MMSFORTH's interrupt routine relieves this problem by slightly
increasing the roll-over hesitation time. You also may wish to adjust and
lubricate your keyboard to smooth its action without further loss of speed.
(Do NOT attempt the following operation on the newer "ALPS" keyboards
with rough-surfaced keytops, or on other computers!)

Power down, then expose the keyboard switch contacts by carefully
lifting off each keytop with a bent paper clip or a loop of string. Push
down to close the contacts, while observing whether all four right-side
contact fingers are closing simultaneously. If one leads, lags or is
misaligned, carefully bend it back in line with a seriber, fine serewdriver,
ete. Remove dust and corrosion if necessary. Then apply several drops of
Archer Color TV Tuner Cleaner (Radio Shack Cat. No. 64-2320) or
equivalent. Replace the keytop and press it quickly ten times to complete
the operation. :

An entire keyboard can be serviced in an hour or less, If you keep
food, drink and cigarettes away from your keyboard and use a dust cover
when it is not in use, it should perform excellently for at least a year
between servicings.

A1,5.4 Blinking Cursor & Auto-repeat Keyboard (TRS-80 only)

It is possible to adjust the cursor character and its blink rate, as well
as the auto-repeat characteristics. Memory locations for these parameters
are found in the System Constant Tables of Appendix Al2,

To change the cursor character, store an ASCII value into the variable
CURSOR: 36 CURSOR !

The blinking cursor's on and off times may be changed independently,
but the ratio of these values gives a readable cursor. If the cursor
on-time is increased it will remain on longer, likewise if the cursor
off~time is increased it will remain off longer. Therefore to slow the blink
rate of the cursor increase both values proportionately.

Al1-10 / MMSFORTH USERS MANUAL

A close approximation of a non-blinking cursor (unsuitable for editing)
is available:

126 on-time C! 127 off-time C!
Or, for a standard TRS-80 Model I cursor:

14 EMIT 1 on-time C! 127 off-time C!

Al,5.5 Lower-case Characters and Full-ASCII Keyboard

MMSFORTH incorporates a lower-case display driver routine (optional
on the TRS-80 Model I). Toggle it on or back off with Shift-0
(Shift-Zero) on the TRS-80, with the CapsLock key on IBM PC. We
recommend that you restrict your Forth words to upper case input, like
the ones already provided.

MMSFORTH also incorporates a full-ASCII keyboard capability for
outputting those characters unavailable from your keyboard's incomplete
character set. This permits direct and complete control of certain
printers, large-computer use via MODEM, etc, On TRS-80's use Clear for
a Control key, and Shift-Uparrow for Escape. Note that MMSFORTH's
floating-point arithmetic option uses a caret, (Control-" on TRS-80), as
its symbol for exponentiation. A special-keys table is provided on the
diskette, and a complete table in Appendix All,

Al,5.6 DRDSECS and DWTSECS

MMSFORTH source code normally is reprecompiled with the
CUSTOMIZE TUtility. But precompiled code (machine code) may also be
manipulated with DRDSECS and DWTSECS, These words read and write
disk sectors to and from RAM. As you gain proficieney with MMSFORTH,
you may find them useful to move sectors about, or just to analyze how
CUSTOMIZE does it for you.

But, two warnings: DWTSECS overrides the PBLK protection, and can
also overwrite important code with great ease when used by inexperienced
hands. Experiment on expendable backups!

Al1,5.7 VIDEO ADJUSTMENT WITH HSYNC (IBM PC only)

If your video display is not neatly centered horizontally, use n HSYNC
to offset its horizontal synchronization to the best position. Try n=6 for
a first try; that is, enter 6 HSYNC (the default setting is n=0). If you
want your System Disk to preset HSYNC your way, put the correct
command(s) in the Auto-command with CUSTOMIZE.

Medol T

MMSFDRTHAﬁystam
14 { 0&/28/81
15 (0&6/28/81
16 (046728781
17 (0&/28/81
18 (0&6/28/81
19 (0&/28/81
2000 0&4728/81
21 { 06/728/81
22 D&4/28/781
2R 0 0&/528/81
24 (0&/728/81
28 (046/28/81
26 (06/28/81
27 L 06/28/81
28 { 04728781
29 { 0&6/28/81
EOOL DAH/28/781
10 0&/28/81
I L 0&728/81
IZ L 06728781
4 (06/728/81
mEOL 06/28/81
TS 0&e/28/81
A7 0 06728781
8 (06728781
T 0&/28/81
40 { D&/28/81
41 (0&/728/81
42 1 N&/28/81
47 { 0&6/28/81
44 § D&/28/81
4% (06/28/81
44 { 0&/28/81
47 (0&/28/81
48 { 04728781
49 { Q&/28/81
50 06/28/81
=1 { 06728781
52 (0&/28/81
=5 0 Q0&6/28/81
54 (0&/28/81
55 (06/28/81
56 (0&6/28/81
=57 { 06/28/81
=8 (0&/728/81
59 { 0&6/28/81
& 0&6/28/81
a1 (D6&/28/81
a2 { 0&6/28/81
63 (0A/28/81
&4 { 0&/728/81
&5 { 0D6/28/81
bbb D6/28/81
&7 { 0&728/81
&HB (046728781
&9 1 O&A/Z28/81
FOoL D&/28/81
71 { D&6/728/81

Listing, {(c) 1981 by MME &/28/81 (1&6:30:47.8)

e 3

L el

M.1 Svstem Disk DIRectory Commands, 2 of drives)

M.1 Option Select Block for recompiling MMSFORTH }

hasic Compiler, 1 of 2

baszic Compiler, of 2

ASSEMELER, 1 of)

ASSEMERLER, of 3

ASSEMELER, 3 of)

<CMOVE ENTER #IM Y/N SFACES .R

LOOF +L0O0F DO LEAVE)

M.1 Optional lower-case display driver)

Interrupt—driven alternate Keyboard w/Typeahead)

DIR ACASBE NCASE OTHERWISE CABEND)

FILL ERASE ELANE MOT MIN MAX OR 2/ -TRAILING FPTC)

Input-Line Editor - alternate EXFECT, 1 of 2

Input-Line Editor - alternate EXFECT, 2 of 2

M.1 Standard Printer Driver % Epson mod)

M.l Extended Frinter Driver - alternate, 1
Extended Frinter Driver -~ alternate, 2

S
Lo L Lo B3

g

I 17 J FAGE)

of
of

B3 b3

}

CRT FCRT empty—buffs FLUSH :R :0..3 °8 DEFTH U.R U.)
¥ M¥x /MOD M/MOD ™MOD / M/ %/ %/MOD)
FICE ROLL 28WAF 20VER D- D< INF OUTF)

SCR COFY DUMF ?TL TL LIST L BLIST FLIST FLISTS INDEX)
CMNAME CATALOG & 79-std words)
Screen EDITOR, 1 of 3)

Screen EDITOR, 2 of 3)

Screen EDITOR, 3 of 3

M.l System Disk DIRectory Commands,
M.1 System Disk DIRectory Commands,

1 of 29
2 of 2, 1 drive)

EXTENSIONS Menu)
DEL-FREC, 1 of &)
DBL~-FREC, 2 of &)
DEL-FREC, 3 of & - stop load here if small RAM)
DEL-FREC, 4 of é: internal words, FORGET T1 if req’d)
DRL~-FREC, 5 of é&: DU/MOD D/MOD D/)
DEL-FREC, & of &: DUx Dx D¥/MOD D%/)
ARFAYS)
BTRINGS, 1 of 3: %" $con $var $. $! %" IN$ fentrots)
STRINGS, 2 of 3@ %+ S$COMPARE INSTR O
STRINGS, % of 3: % to/from # sSarrays $-TR)
RANDOM numbers)
GRAFHICS: ESET ECLR E7 DSET DCLR DY)
SCREEN-FRINMTer; Epson & Okidata mods)
M.l CASSETTE, 1 of 3

CAGSETTE., 2 of 3)

CASSETTE, 2 of 3
M.l CLOCK, 1 of 2

CLOCK, 2 of Z: TIME DATE TLISTS TINDEX)
TOOLKIT: .MEM .8 TRY RUM ZEDIT)
Hackup Drive ¢ to 1 - add to TOOLKIT if vou wish)

BRCOFY % EB#IN routines — add to TOOLEIT if vou wish)
UTILITIEE Menu)

M. 1 FORMAT, 1 of 4)
M.1 FORMAT, 2 of 4)
M.1 FORMAT, 2 of 4
M.1 FORMAT, 4 of 4)
M.1 BACKEUF, 1 of 4 3
M.l BACKUF, 2 of 4)
BACKUF, 3 of 4 - 4th is in M.1 machine code)

Fage Al-U

PbAkf]:

MMSFGRTHASystem
TIE L 06/28/81
74 { 0&6/28/81
75 (06728781
7hH { D&/2B/81
77 0&4/28/81
78 (06/28/81
79 { 04/28/81
80 { 0&/28/81
81 (046/28/81
B2 ({ 0&6/728/81

I 0 06/28/81
84 (0&/28/81
8% (04/28/81

846

requires EEDIT

Listing, {c)

This block is EMPTY)

CORPIES »

SEARCH, 1 of 23

SEARCH, 2 of 2

TRANBLATE V1.9 to V2.0,

TRANSLATE V1.9 to V2.0,

TRANSLATE V1.9 to V2.0,

TRANSLATE V1.9 to V2.0,

TRANSLATE ¥1.9 to V2.0,

ALLCARS)

M.1 CUSTOMIZE, 1 of 3)
CUSTOMIZE, 2 of 3)

M.l CUSTOMIZE, 3 of 3)

U b e

of
of
of
of
of

Ui

1981 by MMS &/28/81

R IR WU

(lé&s

e
s]
bl B

04,43

Fage Al-12

7O

{

oV Aoy

P

.

J

— e

MOMI /}v rawme

MHSFUORTH svystem, L 1”f1ng" (o 198

D&H/28781
Oe/28/81
0&6/28/81
046728781
06H/28/81
D&/ 28/781
D&6H/28/81
06/28/81
O&L/28/81
DAHAZ2B/81
06728781
DaA28/81
O6/28/81
0628781
D&HAZ28/81
06/28/81
046728781
0628781
O6H/28/81
D6/28781
De/2R/BL
O&L/28/81
06728781
06728781
0&/28/81
06728781
D6H/Z28/781
0628781
Q062881
06728781
DhA/Z8/81
Da/28781
O&6H/28/81
Da/287,81
D&H/28/81
0628781
OhH/28/81
06/728/81
N&/Z8/81
06/ 28781
Ga/728/81
D&H/28/781
DA/Z28/81
O&/728781
& /28/81
6 /28/81
&728/81
O0&6/28781
e/ 728781
D&/ 28/,81
046/ 28/81
ObSZ28781
0&6H/28/81
D6/ 28/781
D6/ ZR/81
Q& /PR /81

M.l Frograms Dis

1

5

M.1 Frograms Disk
EXTENSIONS Mernu)
DBL-FREC, 1 of &
DRL~-FREC, 2 of &
DRL-FREC, 3 of &
DERL-FREC, 4 of &3
DBRL~FREC, S of o&:@
DBL-FREC, & of &

ARRAYES)

STRINGS, 1 of I
STRINGS, 2 of 3
STRINGE, 3 of 3
FANDOM numbers

)
}

by FMS &/28/81 (14:34:14.7) Fage Al-13

DIRectory Commands, 1 of 23
DiRectory Commands, £ of 2

- stop load here if small RAM

internal words, FORGET T1 i+ reqg”™d)
DU/ManD DAMOD DS)
DU% D% DX/7MOD Dg/ 3

L3" doon dvar $. %! %" NG dextrots)

]
S

+ SCOMFARE INMNSTR 3
to/from # Sarrayse TR)

GRAFHICE: ESET ECLR ET DSET DCLR D?)
Epsmon % Okidata mods)

SOREEM~FRINTer;
M.l CASSETTE, 1
CABBETTE, 2
CASBETTE, 3
M.1 CLOCE, 1 of
CLOCK, 2 of

[}

4

of

)
~
“
bl
i

£

}

Cd L LA

)
)
)

TIME DATE TLIBTS TIMDEX)

TOOLKIT: .MEM .5 TRY FRUN ZEDIT)
Backup Drive O to 1 - add to TOOLKIT if vou wish)
BCOFY % B#IM routines — add to TOOLEIT if vou wish)

FROGRAMS Menu)

GUESS: number—guessing game
#S0RT: String sorting demo)

S0RTS: Mumber sorting demo,
SORTS: MNumber sorting demo,
SUORTS: Mumber sorting demo,
SORTS: Mumber sorting demo,
SORTS: Mumber sorting demo.

DOODLE, 1 of =
DOODLE, 2 af 3)
DOODLE, 3 of 3)

i
gy
U

ARSI S
[n}
ey
i

}
),
of 5O

alen has data blocks)

Game of LIFE, also has data blocks J

dzsembler LIFE,

fssemnbler LIFE,

BREAEFORTH, 1 of
BREAKFORTH, 2 of
BREAEFORTH, 3 of
BREAEFORTH, 4 of
BREAKFORTH, 5 of

BREAKFORTH, & of
NOTEFAD Editor,
MOTEFAD Editor,
NOTEFAD Editor,
MOTEPAD Editor,
NOTEFAD Editor,

MOTEFAD Editor,
CHECKEROQE, 1 of
CHECEROOK, 2 of
CHECEROOE, 3 of
CHECEROOE, 4 of
CHECKROGE, 3 of

CHECEROOE, & of

1

o
it

RTINS B

o o

o o

0 o -

(£l s SR # a1 S

&

of 23 alsn has data blocks)
af 2

. by Arnold Schaeffer)

}

)

)

3

)
of & 3
of &)
of &)
of &)
of &)

af & —~ resets MARGIN I
plus 2 data blocks at end)

Mt e et e

Moo ! T /)ro?mu—u;

MMEFORTH System,listing, (c) 1981 by MMS &/28/81 (16:37:26.1) Fage Al-l4
7 g, w7 8 5 ROW=34
74 - 7 8 % ROW=:4 ‘
75 7 8 9 ROW=2G
76 S - . - - 7 8 9 ROW=14
77 (Bes28/8T, New Features of MMSFORTH V2.0, 1 of 4)
78 { 0&/28/8B1, New Features of MMBFORTH V2,0, 2 of 4)
79 { 04/28/81, New Features of MMSFORTH V2.0, = of 4)
B0 ASCII CODE KEYEQARD ENTRY DESCRIFTION (0&/01/81)
a1 ~i~ MILLER MICROCOMFUTER SERVICES -!-

I OROMMENT which simultaneously offers access in machine level, as—
84 ware development time by more than half on the major custom pro-

Modo T~

MMSFORTH, System

f>d
sund

1&a

-y
z

1a
19
20
21

R R]

il

oy e

rap
24
25
2
27
28
29
0
=1
32
33
24

ol
Rw]

Zb
a8
29
40
41
42
473
44
45
4
47
48
49
=i

a1

=

e

g
3

7
=4
j =g
=55
el
5é&
=57
a8
59
&0
&l
=
2

&3
&g

k-

wt
&Hé
a8
&
Fi
71
72

7E

e e e S e R e e s, e e e e e, ot o,

P = T R e T B e R =

I s T s o SPC Y

o P

Listing, (o) 1981 by MMS 6728781 (16:24:26.20) Fage Al- 15
0&/28/81 M.3 Option Select Block for recompiling MMSFORTH)
04/28/81 basic Compiler, 1 of 2 3
0672881 basic Compiler, 2 of 21}
D&/TR/BL ABSEMBLER, 1 of I
0&6/28/81 ASBEMBLER, 2 of 3)
0&6/28/81 ABSEMELER, 3 of 3)
0628781 <CHMOVE ENTER #INM Y/N SFACES R 1 17 J FAGE)
O&/28/81 LOOF +LOOF DO LEAVE)
0&/28/781 M.3E Change-Density option: SDENM DDEM)
0&6/28/81 Interrupt—driven alternate Heyboard w/Typeahead)
O6/28/81 DIR ACABE NCASE OTHERMIBE CABEMD)
06/78/81 FILL ERASE RBLAME NOT MIM MAX OR 2/ -TRAILING FTC
06/28/81 Input-Line Editor -~ alternate EXFECT, 1 of &)
O&6H/28/81 Input-Line Editor — alternate EXPECT, 2 of 2
0&6/28/81%M.3 Standard Frinter Driver % Epson mod)
O&a/28/81 ML.3 Extended Printer Driver ~ alternate, | of 2
628781 Extended Frinter Driver - alternate, 2 of 2)
O6/28/81 CRT PCRT empty—buffs FLUSH R :0G..3 "8 DERTH U.R U.)
06/28/81 % My /MOD M/MOD MOD /0 M/ S/ E/MOD)
O6/28/81 PICE ROLL ZS8WAF 20VER D- INF OUTF
D6/28/81 SOR COPY DUMP ?TL TL LIST L BLIST PLIST FLISTS INDEX)
046/28/781 JNAME CATALOG & 79-std words)
0&H/28/81 Screen EDRDITOR, 1 of 3)
046H/Z28/81 Boreen EDITOR, 2 of 31
0&/28/81 SBcreen EDITOR, T of 3
O&4/78/781 M.3 DIRectory Commands, 1 of 2
O6/28/781 M. DIRectory Commandes, 2 of 2)
D6H/728/781 EXTENSIONES Menu)
06728781 DRL-FREC, 1 of &6 1
06H/28/81 DBL-FREC, 2 of &)
0O&6/28/81 DRL-FREC, I of & - stop load here if small RAM)
D&/28/81 DBL-FREC, 4 of é&: internal words, FORGET T1 if reg’d)
O4/28/81 DBL-FREC, 5 of &:@: DU/MCOD D/7MOD D/)
O6/28/81 DBL-FPREC, & of &3 DUx D Dx/7MOD D%/)
04728781 ARRAYS)
D&H/2R/781 STRINGS, 1| of 3 ,3%" Scon $var . £ $" INS Sextrcote)
O&/28/81 STRINGS, 2 of 3: &+ SCOMPARE INSTR)
06/28/81 STRINGS, I of 33 % to/from # s$arrays $-TR D
O6H/28/781 FANDOM numbers)
0&H/28/81 GRAPHICS: ESET ECLR EY DSET DCLR DT)
06/ 28/8148CREEN-FRINTery Epson & Okidata mods)
Da/728/81 M.T CABBETTE, 1 of 3 2
0&6/28/81 CABBETTE, 2 of 32
Q628781 CASSETTE, 3 of 3 3
06728781 MUT CLOCK, 1 of 23
0628781 CLOCK, 2 of Z: TIME DATE TLISTE TIMDEX)
06/28/81 TOOLKIT: JMEM .3 TRY RUN ZEDIT)
D&/ZR/BL Backup Drive O to 1 - add to TOOLEIT i vou wish)

06/28/81
D4H/28/781
Oh/28/781
Oa/28/81
06/ 28781
0&6H/28/81
0é6/28/81
N&/28/81
06728781

O6H/28/81

RCOFY & EB#IM routines — add to TOOLKEIT i+ vou wish)

UTILITIES Menu

M. 3 FORMAT, 1 of 4)
M. 2 FORMAT, 2 of 4)
M. FORMAT, 3 of 4)
M.Z FORMAT, 4 of 4)
M. 3 BACKUFR, 1 of 4
M. 2 RACKUF, 2 of 4)
BACKUF, 2 of 4 - 4th is in M.2 machine code)
This block is EMFTY)

IV’oM'_I[

MMEFDRTHASVEtem Listing, () 1281 by MME &/728/81 (14:25:41.73) Fage Al-14

74
75
7é
77
78
79
20
81
a2

=
Y

84
25
86
87
a8
89
Q0
2?1
P2
2
?4
il
PéH
2?7
28
9
100
1031
102
103
104
105
106
107
108
109
110
111
112
113
114
113
116
117
118
11
120
121

122
.
prangi

124
125
1246
127
128
129
130
131

[OA/2B/81 CORPIES)
{ 06/28/81 BEARCH, 1 of 23 reguires EEDIT 3
{ D&/728/781 SBEARCH, 2 of 2 .
{ D&/728/781 TRANSLATE V1.9 to V2.0, 1 of 9)
{ 06728781 TRANSLATE V1.9 to V2.0, 2 of 5)
{ 0&6728/81 TRANSLATE V1.2 teo V2.0, T of 5)
{ G6/728/781 TRANSLATE V1.9 to VZ.O0, 4 of 5)
(0&6/728/81 TRANSLATE V1.9 to V2.0, S of 5
{ 06728781 ALLCAFS)
{ 06/728/81 M.3 CUSTOMIZE, 1 of 3)
{ 06/28/81 CUsSTOMIZE, 2 of 3
(06/28/81 M.3 CUSTOMIZE, 2T of 3)
{ D&6&/728/781 PROGRAMS Menu
{ D6/728/81 GUESS: number-—-guessing game)
{ 06/728/81 $80RT: String sorting demo)
(06/728/81 SORTS: Mumber =zorting demo, 1| of 5)
{ 06/728/81 SORTS: Mumber sorting dema, 2 of 5)
{ 06/28/81 S0ORTS: Mumber sorting demo, 3 of 5)
{ D6/728/781 SORTS: Mumber sorting demo, 4 of 5
{ 06/28/81 SORTS: Number sorting demo, 5 of S)
{ 06/28/81 DOODLE, 1 of 33 also has data blocks)
{ 06728781 DOODLE, 2 of 3)
(0&/728/781 DOCDLE, % of X
{ D6&/728/81 Game of LIFE, also has data blocks)
L 046728781 hssembler LIFE, 1 of 23 also has data blocks)
(06/28/81 Assembler LIFE, 2 of 2
{ 06/28/781 BREAKFORTH, 1 of &. by Arnold Schasffer)
{ D&/28/81 BREAKFORTH, 2 of & 3
{ 06/728/81 BREAKFORTH, 2 of &)
{ 0&6/28/81 BREAKFORTH, 4 of &)
{ 0&/28/81 BREAKFORTH, S of &)
{ OH/28/781 BREAKFORTH, &6 of &)
{ 06/28/81 MOTEFAD Editor, 1 of &)
{ 0&A/728/81 NOTEFAD Editor, 2 of &)
{ 0&/28/81 NOTEFAD Editor, 2 aof &)
{ 06/728/81 MOTEFAD Editor, 4 of &)
{ Dh/28/.81 NOTEFAD Editor, S of &)
{ G&/28/781 NOTEFAD Editor, 6 of & ~ resets MARGIN)
{ 06/28/81 CHECKROOK, 1 of &, plus 2 data blocks at end)
{ 06728781 CHECEROQOK, 2 of & 3
{ D&/28/81 CHECEROOE, 3 of &)
{ D6/Z28/81 CHECHERQQOE, 4 of &)
{ 0O&6/728/81 CHECEROOK, S of &)
{ O&A/728/81 CHECKROOK, & of &)
™ w7 B Y ROW=24
- - 7 8B 9 ROW=24
7 8 7 ROW=Z9
- ™ ™ . ™ w7 29 ROW=14
(Bos28/8T, New Features of MMSFORTH VB.0, 1 OF 4)
{ 06/28/81, MNew Features of MMSFORTH VZ.0, 2 of 4 2
{ 06728781, New Features of MMBFORTH V2.0, 3 of 4)
ASCITI CODE KEYROARD ENTRY DESQCRIFTION (O&/01/81 3

- MILLER MICROCOMPUTER SERVICES —~i-

ROMMEMNT which simultaneously offers access in machine level, as-—
ware development time by more than half on the major custom pro-

Cassette Instructions / A2-1

A2.0 CASSETTE INSTRUCTIONS

(THIS ADDITIONAL INFORMATION ON THE MMSFORTH CASSETTE
SYSTEM IS NOT SUPPLIED TO DISK SYSTEM USERS.)

System Programs / A3-1

A3.0 MMSFORTH SYSTEM PROGRAMS

This section provides brief descriptions of each program in the
PROGRAMS menu, seen by entering PROGRAMS upon booting the
MMSFORTH System Diskette. (TRS-80 Model I: Swap in the Programs
Diskette when prompted.) Some of these programs are designed as
demonstrations of particular features, others are very usable programs. An
examination of their source code blocks offers a wealth of Forth
programming techniques.

A3.1 GUESS - NUMBER~-GUESSING GAME

This eclassic program has you guess a number between one and a
hundred. It demonstrates a use of the Random Numbers routines, and
provides a good display of simple Forth programming techniques. You
probably know how to write this program in another computer language,
so this is an excellent starting example for analyzing our own Forth
source code, '

A3.2 $SORT - STRING-SORTING DEMO
This program is a demonstration of string sorting.

Enter a series of strings (names, animals, countries, etc.). End the
series with a just carriage return (a "null entry"). The sort takes place
after you press Enter, to give you a chance to set your stop-watch, Want
to see it again?

A3.3 SORT - SORT ROUTINES COMPARED

This program allows you to compare various sort algorithms, and to
see how they work in the computer. It's an unusually effective
demonstration for computer classroom use, or to evaluate Forth's speed.

Select the type of sort from the SORT menu, Choose the number of
items to sort, (128 or 160 is recommended for INSERTION and
SELECTION sorts, 896 or 1840 for the other sorts.)

A series of random ASCII characters are generated directly into the
video memory (and thus onto the sereen), so the character generation and
sorts take place before your very eyes,

A3-2 / MMSFORTH USERS MANUAL

A3.4 LIFE - GAME OF LIFE (AND DOODLE)

The Game of Life is a population dynamics simulation invented by John
Conway, an Englishman, and first reported in the October 1970 Scientifie
American, The DOODLE sub-program allows you to make drawings on the
sereen,

Single cells, represented on the screen as graphics characters,
reproduce, live or die governed by a simple set of rules based on how
many direct neighbors abutt each cell. More than three neighbors and the
cell dies of overcrowding, fewer than two and it dies of loneliness,
otherwise it survives in the next generation. A cell will be born in any
empty space which has exactly three neighbors,

When Life has loaded and its menu screen is on the video display,
press L for the Load mode. You will be prompted for a block number at
the bottom right of the video screen. Load the desired block. Typical
bloek numbers are 75-77 on the Programs Disk for Model I; 120-123 for
Model III, and 139 or 141 for IBM PC. You can use INDEX and EDIT to
locate them on your disk.

You now can press G to Generate successive Life "generations", or
you can press R to Reverse the white and black areas of the screen,
Note that patterns with a lot of white cells will die out relatively fast.
If you have started running Life and wish to stop it to do something
different hold down the I (Interrupt) key until the blinking cursor returns
in the upper right area of the sereen., The Life program only scans the
keyboard (to see if you are pressing the I key) when the full screen has
been updated and before starting the next screen,

To enter your own pattern, note the location of the small block in the
center of the screen (the drawing cursor) and the "compass rose", the
small group of numbers in the upper right of the secreen. The rose
indicates direction: you press the number which represents the relative
direction you wish to move the drawing cursor. The letter in the center
of the rose indicates the mode of action: M for Move, D for Draw, or E
for Erase. ROW and COLumn indicate the current position of the drawing
cursor, The rose numbers correspond to the numbers on the computer's
numerie keypad, Children (of all ages!) enjoy drawing pictures with this
Doodle program, '

If you wish to erase the screen press C to Clear it and W to make it
White, Reverse can be performed repeatedly.

To save a particularly nice pattern or picture, press S for Save and
you will be prompted (as with the Load option) for a block number. This
block number is where you will write the contents of the video screen so
be sure it is not one which has some important data on it. As delivered,
the Model I MMSFORTH Programs Disk typically has 2 free blocks, 85 and
86, the Model III System Disk has 47 free blocks from 132-178, the IBM

System Programs / A3-3

PC System Disk has 12 free blocks from 147-158, (Although MMS may
have furnished some extra information on these blocks, it can be accessed
again from your original diskette when needed.)

Watech the MMSFORTH Newsletter for an occasional interesting LIFE
pattern, or send us one!

A3.,5 ALIFE - LIFE WITH INNER LOOP REDONE IN ASSEMBLEI%)
TRS-80

Demonstrates the extra speed which may be gained in any critical
run-time Forth program by redoing inner, most-used loops into CODE
routines using MMSFORTH's resident Assembler, Definitely run the
longer-lived LIFE patterns in this mode,

(ALIFE is not included on the IBM PC. LIFE's calculation
time is already a small part of its display time, so speeding
it up would have very little effect on the display rate.)

A3.6 CHECKBOOK - CHECKBOOK BALANCING PROGRAM

This program demonstrates the use of double-precision, simple scaling,
and output formatting ("pictured" output), It has been selected for a
detailed diseussion in Chapter 8,

Always use Function 1 first for a demo session, or for repeat sessions
with your own checkbook once it has been set up with beginning balances,
Ending the program with Function 9 involves writing the new data to a
ready diskette,

A3-4 / MMSFORTH USERS MANUAL

A3.7 BREAKFORTH - REAL-TIME VIDEO GAME, WITH SOUND

This now-famous and thoroughly enjoyable program supports the use of
sound effects via the built-in speaker in TRS-80 Model 4 (Port 144) and

IBM PC.

TRS-80 M.l & M.3: To add this dimension to your fun,
connect the computer's cassette output (Port 255) to a
suitable external speaker. One easy way to accomplish this is
to attach an extension speaker to the EAR jack on your
cassette recorder, and then to attach the computer/recorder
cable to the recorder's AUX jack. Finally, fool the recorder
into thinking it is recording a tape, by opening its tape
compartment and holding in the tab at the back left while
simultaneously depressing its PLAY and RECORD Kkeys.

The objeect of BREAKFORTH is to remove as many "bricks" as
possible from the mid-screen wall, by moving the bottom-line paddle
sideways to return served balls - each brick disappears as the ball
bounces off it, You econtrol paddle motion with the TRS-80's Rightarrow
and Leftarrow keys, or with the two right-most keys on the top row of
the IBM PC's keyboard,

Your secore grows as you remove bricks, with bricks from higher levels
worth more, The ball speed increases as you break through to higher
levels, and you will find that spin can be imparted to the ball by your
paddle, If your skill and luck combine to remove all the bricks, you will
get a surprise bonus and can continue to play the remaining balls.

Try the following BREAKFORTH game setting combinations: a speed of
3 and 5 balls to start, then a speed of 5 (7 on IBM) and 50 balls as your

skills increase.

A similar, earlier version of BREAKFORTH is the subject of a major
Forth article in the August 1980 special FORTH Issue of BYTE Magazine
- don't miss reading its detailed analysis of this program! Arnold
Schaeffer wrote this program on a MMSFORTH Cassette System as his
first adventure into Forth, when he was a high-sehool junior. So get with
it, Forth fans!

System Programs / A3-5

A3.8 NOTEPAD - ONE-PAGE LETTER WRITER PROGRAM

Last but not least, THE NOTEPAD is a useful gift to our users. At no
additional cost, it's a complete text-editing program - not an elaborate
one, but a fast, editor-like one in Forth source code ready to handle your
letters, bills, ete, With a few adjustments, it will -be ready for writing
your Forth source blocks, as well, with some new wrinkles the full-sereen
Editor didn't even think of!

For standard use, consider THE NOTEPAD to have virtually all the
same features as the regular Full-sereen Editor, So master MMSFORTH's
Editor operations, first. Then we need only describe the differences of
THE NOTEPAD, in this section. Where the Editor only operates on a
single 16-line sereen, THE NOTEPAD addresses a range of blocks as a
continuous page of linked screens which are temporarily stored in PAD
independent of the Editor's block buffers., Its default mode links 4 scereens
into a page of 64 columns by 64 lines, a useful size for normal 8-1/2" x
11" paper. You can reset it at any time; to set it to 6 screens per page:

6 #SCREENS ! Easy? But leave it at 4, for now,

The sky's the limit on how you can use this new tool, but here are
some starting ideas., First, load NOTEPAD from the menu and when it
comes up enter a starting-block number followed by the same word,
NOTEPAD, to read in some text from disk. We've included an important
letter to you, starting typically on Model I Programs Diskette Block 81,
Model III Block 128, and IBM Block 143. So read it in now, with 128
NOTEPAD . Notice the speed: it loads in about 1 second, and that you
can immediately scan down four screens worth of lines with the
downarrow! You can set up your printer and Print the entire contents with
an Alternate-P (using the TRS-80 Shift and Clear keys for Alternate), or
you can print any first portion of it by adding a Limit marker on the first
column of the first non-printing line, with an Alternate-L while in the
Line mode. Then move the cursor before the marker, and toggle into the
Page mode to enable the new setting, Remove the limit marker when
you're done using it, because you also can use it anywhere on a line to
limit your Page mode Insert operations to a continuous "line" only up to
that point. For most operations, we like to be in both the Page and Insert
modes at once, But all combinations are available and useful.

Another new character is the Margin marker, invoked by an
Alternate-M. While in the Page and Insert mode, put one in the first
column of a paragraph you wish to move, then use the down-arrow only
to proceed to the second column, first line of the following paragraph and
put a second Margin marker there. Now put the cursor back on the first
one and Delete the "line" with Alternate-Ih Insert it wherever you prefer
with an Alternate-I, and then Delete the Margin marker characters with a
plain Control-D (Clear-D on the TRS-80) for each, Like it?

A3-6 / MMSFORTH USERS MANUAL

Your Save and FLUSH operations are handled together and immediately
by Updating with an Alternate-U. This is different from the Editor's
Update operation (which doesn't automatically FLUSH to disk), so be sure
to have a formatted diskette mounted for the write operation. Remove the
write-protect tab and reset too-high PBLK settings first, if necessary.
Update your working text often, for insurance! Once you've got your text
written to the disk, you can Quit, with an Alternate-Q. Then you can use
NOTEPAD to read another page of blocks from disk, or you ecan reread
the same page by entering the short-hand word, NP ,

When you are ready for more heady stuff, try setting #SCREENS to
the length of the program you are working on, and edit it here, instead.
You can express to the first or last word of the page with
Control-Uparrow and Control-Downarrow, to the extreme columns of the
present line with Control-Leftarrow and Control-Rightarrow. Wherever in
the page you are, a Alternate-Uparrow (Control-PgUp on the IBM PC) or
Alternate-Downarrow (Control-PgDn on the IBM PC) move you to the same
position on the prior or following page, respectively (do an Update first,
if you are saving the present text!). Shift-Uparrow and Shift-Downarrow
are slightly modified from the Editor, in that they now move you to the
next-found upper corner of a discrete block, ideal for tracking actual
block locations when using THE NOTEPAD to edit a long "page" of Forth
source code bloeks.

Let's see your own MMSFORTH Newsletter items concerning
programming tricks and practical applications for this exciting new
MMSFORTH program!

System Utilities / A4-1

A40 MMSFORTH SYSTEM UTILITIES

This chapter provides brief descriptions of each utility program on the
MMSFORTH V2.0 or V2.1 System Diskette. These utilities are designed to
load above the DIRectory for temporary use,

16K RAM: The FORMAT and BACKUP utilities need more
memory than is available on a 16K RAM computer with a
complete MMSFORTH system, Therefore, in order to run on
16K RAM systems, these two Utilities must first FORGET
the Editor and redefine DIR to BOOT the system when done.
Instructions for these 16K adjustments are given in the
individual write-ups below,

A4]1 FORMAT

This utility is used to format blank diskettes, It is always necessary
to run this program or a DOS-type format program before using any
diskette for the first time. Since you may want a formatted diskette
sometime when you are in the middle of something you don't want to
interrupt, it is a good idea to format a few extra diskettes so you will
have them handy.,

A4,1,1 FORMAT - Operating Instructions

1, Bring up MMSFORTH System,
2. Type FORMAT, to bring in the FORMATting program,
3. The general flow of operation is:

stinatio ive (0 ?
where n is the highest number drive set in your system. (MMSFORTH
does not check each drive to see if it is there; you must set the
number of drives using the CUSTOMIZE Utility.)

eady to format a n-track, sin double)-density disk

on Drive x (Y/N) ?
The system pauses for you to confirm that you have placed the
correct disk in Drive n, without write-protect tab, ete,

Formatted Tracks: 0 1 2 .. n
The formatting takes place; each track number is displayed when it is

written and successfully verified.

ormat another disk N) ?
Allows you to start another. If the reply is Y it will go to "Ready to
format..."

A4-2 / MMSFORTH USERS MANUAL

t System Disk in Drive 0 (Enter
Allows you to restore the MMSFORTH System Disk if you have

removed it.

A4,1,2 Advanced Users

It is possible to use the FORMAT Utility to format any single track or
any range of tracks., This can be particularly useful if you have a diskette
which already contains data, and you wish to extend it from 35 to 40
tracks, or if you have an unrecoverable read error on a track on a
diskette and want to re-format just that track.

In the last instance, it is important to remember that this utility
works on tracks, not blocks. Here's how to calculate which tracks you
want to format starting with a known bloek number:

On TRS-80's, there are four standard 256-byte sectors per
MMSFORTH Block, and ten 256-byte sectors per track on the
standard TRS-80 Model I diskette or 18 sectors per track on
the Model III. The first two sectors on the MMSFORTH
diskette are used for the System Boot program and do not
get counted in as part of a block; i.e., Block 0 starts at
Track 0, Sector 2.

A standard IBM PC diskette consists of 159 blocks per side:

two 512-byte sectors per block, 8 512-byte sectors per
track, 40 tracks per side. The first sector is a System Boot.

Example: On what track is Bloeck 20?
Model I:
(20 blocks x 4 secs/block + 2 secs) = 8.2 tracks

10 sees/track
Track 8, Sectors 2-5

Model 111:
(20 blocks x 4 sees/block + 2 secs)

18 secs/track

4,56 tracks

Track 4, Sectors 10-13

IBM PC:

(20 _blocks x 2 seecs/block + 1 seec) = 5,25 tracks

8 secs/track
= Track 5, Sectors 2-3

System Utilities / A4-3

(D?# does this calculation automatically, but that won't help
you to see what's going on!)

Prove it works, by reading 1024 bytes of data from this disk
sector to the video display and comparing it to Bloek 20:

Model I: 15360 0 6 2 4 DRDSECS

Model 1II: PAD 0 3 8 4 DRDSECS

PAD 15360 1024 CMOVE
(In its normal mode, the Model IIT does not support direct
sereen 1/0O at double-density disk data rates.)

IBM PC: PAD 0 3 7 2 DRDSECS
PAGE PAD 1024 PUT-CHRS 20 0 PTC

To format a range of tracks or a single track, bring up the system
and FORMAT utility as before. When the Destination Drive question
appears on the screen, press the Break key to get MMSFORTH's _okK
prompt. Type:

drive# 1lst-track# #tracks-to-be-formatted FORMAT-TRACKS

Press Enter and the system will format your tracks. For example, to
change a 35-track diskette to a 40-track diskette on Drive 1, you will -
need to format Tracks 35 to 39, (In MMSFORTH, drive, track, and sector
numbers always start at 0). First, be sure that the drive in that position
is capable of writing to 40 tracks, and that you have customized your
system to indicate that Drive 1 has 40 tracks. Then the command will be:

1 35 5 FORMAT-TRACKS

Voila!

A4.1.3 Special Considerations

TRS-80: The FORMAT Utility must be modified to allow
running it in a 16K TRS-80 system, To do this, it FORGETs
a major portion of MMSFORTH and redefines DIR to reboot
the system., Borrow a similar computer with at least 32K
RAM and edit out the beginning paren on Block 65, Line 1.

A4-4 / MMSFORTH USERS MANUAL

A4,2 BACKUP

This utility is used to backup one diskette to a formatted diskette,
Unlike TRSDOS, BACKUP will only work to a diskette which is already
formatted, and it will write over a diskette which contains data. (To copy
blocks between differing disk formats, use the COPIES Utility instead.)

A42.1 BACKUP - Operating Instructions

1. Bring up MMSFORTH System.
2. Type BACKUP, to bring in the BACKUP program.
3. The general flow of operation is:

Source Drive (0..n) 2

where n is the highest number drive defined in your system.
(MMSFORTH does not check each drive to see if it is there. You set
the number of drives using the CUSTOMIZE Utility.)

Destination Drive (0,.n) ?

(If source and destination are in the same drive, see Section
A4.2.1.1.)

Ready to backup a n-track, single(double)-density disk

from Drive x to Drive v (Y/N) 2
The system pauses for you to verify that the correct disks are
inserted, have no write-protect tabs on, etc.

Backed-up Tracks: 0 1 2 e D
The backup takes place, an each track number is displayed when it is

sucessfully transferred.

ckup another disk ?

Allows you to start another, or to FORGET TASK and return to the
DIRectory, If the reply is Y it will go to "Ready to backup..."

ut tem Disk in Drive 0 (Enter
Allows you to restore the MMSFORTH System Disk if you have
removed it,

System Utilities / A4-5

A4.2.1,1 One-Drive BACKUP

If the source and destination disks are the same the procedure is a bit
different. After answering the "Ready to backup ..." message you will get
the message:

How ma available (16,,48) ?
Probable answer will be, 16, 32, or 48,

Ready to backup a n-track, single(double)-density disk
ive x N) ?
As with FORMAT this allows you to confirm that the right disk will
be rewritten in the right manner.

nsert Source Disk (Fnte
At this point you should insert the disk which is to be copied into the

appropriate drive,

Tracks 00 01 02 xx

As many as will fit in the memory size you specified.

nsert tipation Disk ter
Now put in the formatted diskette onto which you will be writing,

Irack: 00 01 02 xx

Write out all those tracks which were read in.

Repeat the above cycle until all tracks have been copied through
memory.

Backup another disk (Y/N) ?

Allows you to do another without having to start the program again.
If you reply N ,

t tem Disk in Drive 0 (Enter
allows you to restore the MMSFORTH System Disk if you have
removed it,

A4.2.2 Errors

Possible error messages include reports that the disk drive number
chosen by you is outside the range of drives that the system thinks it
has, that the drive is not ready, or that you had a read or write error. A
read or write error prints 2Read: or 2Write: followed by the number of
the problem ftrack.

A4-6 / MMSFORTH USERS MANUAL

A4.2.3 Advanced Users

It is possible to use the backup program to backup a single track or a
range of tracks. This can be particularly useful if you have had to
reformat a single track which contained important data, and you have a
backup which has some obsolete data, but the particular track in question
is still good, or good enough to use.

It is important to remember that this utility works on tracks, not
blocks. (Use the COPIES Utility to copy blocks between single- and
double-density diskettes on Model III, M.,3 and IBM diskettes, on IBM PC,
ete,) You can calculate which tracks you want to format, as described in
Section A4.1.2.

To backup a range of tracks or a single track bring up the system as
before., When the Source Drive question appears on the screen, press the
Break key to get MMSFORTH's _ok prompt. Place on the stack the
following values:

source-~drive# dest-drive# lst-track# #tracks BACKUP-TRACKS

Press Enter and the system will backup your tracks. For example, to
backup Tracks 13 and 14 from Drive 0 to Drive 1 the command will be:

0 1 13 2 BACKUP-TRACKS

Presto!

A4.24 Special Considerations

16K RAM: The BACKUP Utility must be modified to allow
running it in a 16K TRS-80 system. To do this, it FORGETSs
a major portion of MMSFORTH and redefines DIR to reboot
the system., Borrow a similar computer with at least 32K
RAM, and edit out the beginning paren on Block 69, Line 1.

System Utilities / A4-T7

A4.3 COPIES

This utility is used to copy a range of contiguous blocks from one part
of a diskette to another or between diskettes, It will be invaluable for
creating "slimmed down" system disks and reshuffling blocks for your own
projects. Use it to copy between single-density (Model 1) and
double-density diskettes on TRS-80 Model III computers or between IBM
and Model III formats on IBM PC computers. (BACKUP does not copy
between differing disk formats.,)

A4.3.1 COPIES - Operating Instructions

1. Bring up MMSFORTH System,

2. Type CCPIES, to load the Block Copying program,

3. If working between two different diskette formats, press Break, and
configure drives as desired. (0 SDEN, 1 M.3, ete.) Then type COPIES
once again,

4, The general flow of operation is:

First (Jowest) source block# ?

Reply with block number to start copying from., This may be an
absolute block number such as 135, or it may be a relative block
number such as: 21 :1 ,

Number of blocks to copy ?
Reply with the number of blocks you wish to copy.

First destination block# ?
Reply with the block number to start copying to.

opy n blocks from Block x to Block ?
The system pauses for you to think (as in IBM!) and to verify that
the blocks and number of blocks are correct,

Count: 1 2 3 ase D
The copying takes place.

Opy 0O blocks 2
Allows you to do another without having to reload the program. If you
reply N ,

t tem Disk in Drive 0 (Enter
Allows you to restore the MMSFORTH System Disk if you have

removed it,

A4-8 / MMSFORTH USERS MANUAL

A4.3.2 Advanced Users

BCOPY and <BCOPY are user words available within the COPIES
utility. BCOPY copies the lowest block # first, while <BCOPY performs
from the highest. (COPIES is "intelligent, It does whichever won't
"smear"; i.c.,won't destroy data when the two block ranges overlap.) Just
press Break to try them out. Some users prefer using these words
directly, loading them into the TOOLKIT blocks for readiness (see an
Index for block locations)., Note that the :n words which permit relative
block addressing may not be supported in the 16K RAM versions of some
utilities.,

These words expeet three items on stack: from, to, and count. So, to
use BCOPY type:

from-block# to-block# #blocks BCOPY

Use BCOPY or <BCOPY as you would use CMOVE and <CMOVE (see
Glossary).

A4.3.3 Error Messages

Error messages concern block numbers which are off the disk or on a
bloeck which is software write-protected by PBLK, as well as read and
write errors.,

The only one likely to give any problems is a write error which will
return you to MMSFORTH without completing the program. After the
message Write: Disk Frror: Block y ok you should enter FORGET TASK
DIR to return to the menu or COPIES FORGET TASK DIR to reenter the
program and prepare it to return to the Directory when completed.

System Utilities / A4-9

A44 SEARCH

This utility is used to find a particular word in source blocks and
optionally change it. It is useful if you wish to change all the references

to a particular word for a new spelling, or to remove a routine which has

become superfluous.

A4.4.1 SEARCH - Operating Instructions

1, Bring up MMSFORTH System,
2. Type SEARCH, to bring in the SEARCH program,
3. The general flow of operation is:

First block to search 2

Reply with the lowest block number you wish to search., The blocks
must be contiguous, or you must make multiple passes through the

program,

Number of blocks ?
Reply with the number of contiguous blocks through which you will be

searching,

Search for 2

Reply with the word or phrase for which you are searching, It may be
up to 31 characters, but may not include blanks.

int the Matches 2
Allows you to have a list of the block and line numbers printed on a

printer.

Edit the matches (Y/N) 2

If you chose N to the previous question, this question allows you to
choose to edit the words as they are found. As soon as each match is
found you are put into edit with the cursor on the particular word
found and you can do any edit function. When all is edited to your
satisfaction, press Alternate-U to mark the screen as UPDATEd, then
Alternate-Q to go on to the next occurrence of the word. Be sure to
type FLUSH when completed. This will force any screens still in the
buffers out to disk,

A4,4.2 Special Considerations
16K RAM: The SEARCH Utility has provision to allow

running it in a 16K TRS-80 system, To do this, you will have
to change Block 75, Line 1 by removing the left-paren,

A4-10 / MMSFORTH USERS MANUAL

A45 TRANSLATE UTILITY (FROM V1J9), ETC. (TRS-80)

Because MMSFORTH Version 2.0 introduced the 79-STANDARD subset
of Forth words, programs written in prior versions of MMSFORTH may
require a few or even many corrections if they are to be moved up to
this new system, MMS provides three ways to assist in this process: the
TRANSLATE Utility, documentation to do it yourself, and our own
services, MMS recommends the latter for our standard diskettes.

If Version 2.0 is the earliest MMSFORTH you have used, you can skip
this section. The TRANSLATE Utility is used to translate TRS-80
MMSFORTH Version 1.9 source programs to Version 2.0, It should be run
on each program only once! (It will translate V2.0 code into errors.)

A4,5.1 THE TRANSLATE UTILITY (TRS-80 only)

The TRANSLATE Utility will be the preferred tool for most of your
own conversion needs, It is delivered as part of the MMSFORTH V2.0
System and will automatically rewrite many programs to that version,
flagging nearly all of those few changes which may require your direct
attention.

Slightly experienced Forth users should be able to use the TRANSLATE
utility without additional documentation. Just call it up from your System
Diskette's Utilities menu. If you have a printer, use it to record
TRANSLATE's additional comments to you.

Like all new programs, experiment with this one before you expect
total success. Be sure to work on a backup diskette so you can recover
after an accident!

System Utilities / A4-11

A4.,5.2 TRANSLATE - Operating Instructions (TRS-80 only)

1. Bring up MMSFORTH System,

2. Before doing anything else, make a backup of the disk you intend to
change. Do not TRANSLATE on the original! Otherwise, if you
mistranslate the source code you might have no way to recover,

3. The general flow of operation is:

t V1,9 disk(s), without write tect tab(s

intothe drive(s) and press Enter

Pauses to allow you to insert the diskette(s) to be translated.
Although one could do multiple diskettes in one pass, we recommend
that you TRANSLATE one program at a time.

First block to translate 2

Reply with the absolute or relative block number at which to begin
translation,

Number of blocks 2

Reply with the number of blocks to be translated in this pass,

slate Blocks x thru ?
Verifies the beginning and ending block numbers.

Qutput to printer (Y/N) ?

Allows you to choose to print the warning messages on a printer,
UNLESS YOU HAVE NO PRINTER you should reply Y to this question,
The warning messages are very important.,

Translating to MMSFORTH V2,0

So you know that it is working.

a t blocks ?
Allows you to run another program through the TRANSLATE utility.

A4,5.3 DOCUMENTATION FOR TRANSLATION (TRS-80)

The next section, the rest of this USERS MANUAL, and the
MMSFORTH Glossary provide information to enable you to edit changes
into small programs and special projects, as well as to finish those items
which the TRANSLATE utility brings to your attention,

Conversion of a V1.9 program to run on a V2,0 system involves
consideration of three classes of words:

Class One: Words which behave exactly alike in both systems but have
different names,

A4-12 / MMSFORTH USERS MANUAL

Class Two: Words which basically do the same function as before, but
with a slightly different argument sequence.

Class Three: Words which existed in V1.9 but are not available in V2.0.

TRANSLATE handles Class One words by substituting them into the
source text on the diskette. If the change will cause the source line to
exceed 63 characters, the system will issue a warning message. If the
new word is sufficiently long it might result in losing some overflowed
text on that line, so be prepared to consult the original version when

required,

A related point is that V1.9 compiled blocks as 16 lines of 64
characters, while V2.0 compiles blocks as a single 1024-character line.
This means that values in the 64th column can become combined with the
first character on the next line, as no space is inserted upon loading.
This is good for some new uses (run-on quotes and comments), bad if it
results in an unintended merged "word" such as ";:" , Similarly, be sure
to close quotes and parenthetical comments if you do not want them to
wrap around to additional lines! Closing " and) characters may be
inserted in the 64th column.

TRANSLATE gives warning messages for the remaining two word
classes,

The first two blocks of the TRANSLATE program may be edited to
include other appropriate Class One or Classes Two and Three words, for
your specific tasks.

System Utilities / A4~-13

CLASS ONE WORDS (replaced automatically)

V1.9 Word

1"

! s

(")

-DUP

S
<BUIIDS
<R

CIS
DMINUS
ECHO
END
ERASE-CORE
MINUS
MOVE
PEND
PERFORM
R[

WHILE

V2.0 Equivalent

" (where used to open a quote)
[COMPILE] '
1

DUP
EXIT
CREATE
>R

PAGE
DNEGATE
EMIT
UNTIL
EMPTY-BUFFERS
NEGATE
CMOVE
REPEAT
WHILE

RP

BEGIN

SOME SPECIAL CASES (not handled)

V19 Word
D!

D@
DCONSTANT
DVARIABLE

EDS
MOD, /MOD, ete,
Recursive definitions

V2.0 Action

2! uses reversed order for 4 bytes (no problem
if new data).

2@ as above.
2CONSTANT as above,
2VARIABLE as above,
initialized to 0. .

EDIT - no change,
Remainder now has sign of divisor, not quotient,
Must use MYSELF,

also is automatically

SELDOM-USED V1.9 WORDS (not defined or different in V2.0)

#BL #SB
$LIT $LOOP
-1 32/16
AM* B*
CWBLK D#
HID INTRP

TYPEIT

$+LOOP $;CODE $BCASE
& (m (L)

2IN ALF ALFA
Cs: CLEAR CRBLK
D#S ERBLK EWBLK
LINE M- TEXT

A4-14 / MMSFORTH USERS MANUAL

Word
#TRACKS

#DV
-MOVE

<#

?

ACASE

BK1

BK2
CVARIABLE
EXECUTE
FILL

H

HI#

IMMEDIATE
LOAD

LOADS
NCASE
U*

U/
VARIABLE

WORD

CLASS TWO and THREE WORDS (warnings given)

Meaning of warning

Doesn't exist, see DISKDATA.

Doesn't exist, see DISKDATA.

Used ending (high) data area addresses as arguments.
New word <CMOVE uses starting (low) addresses.
Printed 1 space before number in V1.9,

prints 1 space after number in V2.0.

Version 2.0 double-prec., etc. (see Glossary).

Printed 1 space before number in V1.9,

prints 1 space after number in V2.0.

Final " may erroneously be converted to ." by
TRANSLATE,

Doesn't exist, see BUFFDATA.

Doesn't exist, see BUFFDATA.

V1.9 used initial value on TOS;

V2.0 has no initial value,

V1.9 used PFA (parameter field addr.),

V2.0 uses CFA (code field addr.).

V19: echr start-adr count

V2.0: start-adr count chr

V19 FORTH word for dictionary pointer and
ASSEMBLER word for register,

V2.0 FORTH is DP, ASSEMBLER is H .

Same definition in V2.0, but double-precision words
now have high byte as TOS.

V1,9 was an IMMEDIATE word, V2.0 is not.

V1.9 Stacked a load request until next invocation of
outer interpreter;

V2.0 invokes outer interpreter when this word is
executed.

See LOAD; overridden by --> .

See ACASE.

V1.9: word * byte -> word

Vv2.0: word * word -> double-word unsigned

Not defined in V2.0

V1.9 used initial value in TOS,

V2.0 has no initial value,

V19 left nothing on stack,

V2.0 leaves HERE on STACK.

System Utilities / A4-15

A454 MMS TRANSLATION SERVICES

MMS can do it for you. Custom conversions must be charged by the
hour, but MMS can easily rewrite your standard Model I MMSFORTH
programs such as THE DATAHANDLER and the GAMES and UTILITIES®
diskettes for $10.00 each, plus shipping/handling, plus any increase in
retail cost (none as of this writing). We recommend that you take
advantage of this service in the case of these packages; it offers a
low-cost opportunity to save work and to gain any features we may have
added., Updated manuals, if desired, cost extra,

A4-16 / MMSFORTH USERS MANUAL

A48 ALLCAPS (TRS-80 only)

THIS UTILITY IS NECESSARY IF YOU DO NOT HAVE LOWER CASE
CAPABILITIES ON YOUR MODEL I TRS-80. All the MMSFORTH programs
and utilities can be used without lower case, because the display driver
converts the characters as they are put out to the sereen. HOWEVER,
BLOCKS CONTAINING LOWER-CASE CANNOT BE SUCCESSFULLY
EDITED!! The Editor does not go through the video display driver and
. uses the video memory for storage. Because the uppercase-only video
display lacks one of its bits, any lowercase Forth source code which you
don't convert to uppercase first will be converted to garbage, unreadable
when on the screen and converted to bad data if saved back to disk.

A4.,6.1 ALLCAPS OPERATING INSTRUCTIONS (TRS-80)
1. Bring up MMSFORTH System.
2. Make a backup of the disk you intend to change.
3. Type ALLCAPS, to bring in the Capitalizing program.
4, The general flow of operation is:
PUT DISK TO BE CAPITALIZED INTO DRIVE 0
FIRST BLOCK TO BE CAPITALIZED ?
Reply with the block number of the first block to be capitalized.
NUMBER _OF BLOCKS ?
Reply with the number of blocks to be translated. DO NOT RUN THE
ALLCAPS UTILITY ON MACHINE LANGUAGE BLOCKS, or they will

be incorrectly modified to garbage.

READY TO CAPITALIZE BLOCKS x THRU y (Y/N) ?
Allows you to verify that the right blocks are chosen.

CAPITALIZING BIOCK: 15 16 17 .. nn
The capitalizing takes place,

CAPITALIZE OTHER BLOCKS (Y/N) ?
Allows you to start another pass.

System Utilities / A4-17

A4,7 CUSTOMIZE

This utility is used to reset the system parameters including number
and type of disk drives, memory size, software block protect, auto-
command(s) on boot, directory block location, and printer margin, It can
be used to permanently incorporate new system or user routines into the
portion which comes up on Boot,

A4.,71 CUSTOMIZE - Operating Instructions

1. Bring up your MMSFORTH System,

2. Enter FORGET DIR (unless you want the final disk to use the old
DIRectory).

3. Load any system routines and user programs which you want to
include in the booted (precompiled) portion of the system,

4, If you typed FORGET DIR before, type DIR now so CUSTOMIZE is
defined.

5, Type CUSTOMIZE, to bring in the CUSTOMIZEing program (it does a
FORGET DIR).

6. CUSTOMIZE itself goes like this:

irst available Block wi X
where x is determined by the dictionary size.
‘ Directory Block# 2

The block number which will be initialized into DIRBLK should be
entered here, Typically, this value is 40 on Model I and Model III
systems, 59 on IBM PC. You can confirm this by displaying the value
of the DIRBLK constant.

we otected k# 2

Sets the software write-protect feature. Any track numbers lower than
the number entered here cannot be written to without first lowering
the contents of PBLK, the variable where this number is stored.
Typically, the Model I system comes with PBLK set to 86, (leaving
just Block 86 empty on a 35-track standard disk!), and the Model III
system to 118, and the IBM PC to 137, You can confirm this value
with PBLK ? .

Note: The specific values in these sample lines may vary
depending on your computer.

Memory size (-32768=16K, ~16384=32K, -6=48K) ?
Sets the memory size for the system. Caution: setting this number
larger than available RAM will make your disk inoperable! If you wish
to load a printer or other driver in high memory you would reduce the
address entered by the size of that program,

A4-18 / MMSFORTH USERS MANUAL

Printer left margin (0 is std,) ?
Allows you to set a software margin on the printer. This is especially
nice if you have a printer with unmovable tractors. It allows you to
indent the left margin for centering Forth blocks, or to punch for
looseleaf binding.

Number of block buffers is 2
If you had reset the number of buffers in Bloek 15, Line 4 (IBM PC

Block 20, Line 4) this would give you a choice of 2..n buffers to be
allocated. To change the number of allowable buffers, change Block
15, Line 4 from 2 BUFFDATA to n_BUFFDATA where n is a
hexadeeimal (base 16) number representing the maximum number of
buffers you wish to allow for. If you change Block 15, you must first
reprecompile the system according to the instructions on Line 1 of
Block 15, before using CUSTOMIZE to make the change permanent,

Disk start-up speed (1,.255, 48 is std,) ?

Allows you to change the delay time between turning on the disk and
actually reading or writing, The system default is a carefully
calculated trade-off between adequate delay to allow writing, and
minimized delay to keep down operating time. A few disk drives may
give read/write problems, especially if run on the 50-Hertz current
used in many European countries. These drives should run reliably if
this delay number is increased to 100 or 150,

of disk drives (1,.4) ?

Allows you to set the number of disk drives. This will allow you to
access as many disk drives as you have set here. If you have set the
number of disk drives to 2 and you really only have one drive, you
will get a read error upon trying to access the non-existent drive,
but if you have set the number of drives to 1, you will get a Block
out-of -range message which will not mess up your buffer contents. If
you have more physical drives than are specified here you will not be
able to access the extra drives.

Drive 0: Single or Double density (S/D) 2 (Model III only)
Specify initial density, normally D.
Or,
Drive 0: IBM or M.3 (I/M) 2 (IBM PC only)
Specify initial format, normally I. Permits use of TRS-80 Model III
formatted diskettes (179 blocks/side!) except in Drive 0 during boot.

Number of tracks (40 is std., format must mateht) 2

Set the number of tracks which your drive will be able to access.
Most drives can access at least 40 tracks, but older Radio Shack
Model I drives access only 35. You can use the FORMAT-TRACKS
portion of the FORMAT utility to add higher tracks on a previously
35~track diskette,

TRS-80: Repeats last two for each drive.

System Utilities / A4-19

Disk speed (0=6, 1=12, 2=20, 3=40 msecs; 3 is std,) ?

You can set the track access speed higher on some drives than on
others. Model I TRSDOS is set for the slowest speed because the old
Radio Shack drives could only go that fast. You will get read and/or
write errors if you try to run at a speed higher than your drives can
handle. Some typical Model I drive speeds are: Older Radio Shack
(Shugart) = 3, BASF, Percom and TEAC = 2, MPI & Tandon = 1. IBM
PC drives, Model III delivered Radio Shack drives, MPI and Tandon
drives and some others ecean run at 0. If in doubt, experiment
carefully.

IBM PC: Repeats last three for each drive.

Auto-command:

Allows you to set up a command or series of commands which will be
executed on Boot after the copyright message is displayed. The
Auto-command string may be a maximum 80 characters (but it could
specify 150 LOAD, for example, to do more), For a standard system,
reply DIR . This feature is similar to the TRSDOS AUTO command, or
the PCDOS AUTOEXEC.BAT File. To temporarily suppress this feature
on the TRS-80, hold down the Break key while booting (if you get an
error message later, enter EMPTY-BUFFERS before proceeding). On
the IBM PC hold down Control-NumLock, instead,

Place disk to be CUSTOMIZED in Drive 0 (Enter)
Place disk in drive; the CUSTOMIZE utility will write the boot and

precompiled system onto it.

A4,7.2 Temporary CUSTOMIZE

It is possible to run the CUSTOMIZE program up to the Auto-command
question, then press Break and have your system retain the new settings
in memory. They will not be on the disk, so the old values will return
when you reboot. If you need to temporarily set something different, this
is one way to do it.

System Extensions / A5-1

A5,0 MMSFORTH SYSTEM EXTENSIONS

Certain extension wordsets for MMSFORTH are available as added-cost
packages. For example, the MMSFORTH Utilities Diskette includes a
Floating-point Math wordset, a full Z80 Assembler wordset (TRS-80 only),
and a Cross-referencer Utility. In this Appendix, however, extensions
means special included wordsets for optional addition to MMSFORTH's
menu on the Systems Diskette.

You can quickly find the Forth source code location of each set of
extension blocks by consulting an INDEX, or by looking them up on the
directory blocks:

DIRBLK EDIT

and one block higher. Examine the contents of these extension blocks with
your Editor, learn their operation from your Glossary, and use them to
gain familiarity.

When one or more Extensions are called from the MMSFORTH System
Diskette DIRectory, the Extensions are loaded after a FORGET DIR and
the DIRectory words are then reloaded (see Appendix 8).

A5,1 DOUBLE-PRECISION NUMBERS

Users new to Forth are often surprised by its preference for integer
mathematies, There are good reasons for preferring single-precision
integer arithmetic most of the time, double-precision when needed, and
floating-point as a rare exception,

Single-precision integer math is sufficient for most purposes and where
it fits, it fits smallest, fastest, easiest and without floating-point's
inherent round-off error, For most business accounting applications and
the like, single-precision's values from 0 to 65535 or from -32768 to
32767 won't hack it, but double-precision will count over an integer range
of more than +/- two billion, or will count the pennies across a range of
better than +/- $21,000,000.00 . (If your assets exceed this amount, you
can afford to hire MMS to add triple-precision routines for your use!)
Although that decimal point isn't printed out by the double-precision
operation, it is easily added to the output with an appropriate word. (See
MMSFORTH's CHECKBOOK balancing program for an example,) Again,
double-precision integer math outperforms floating-point in compactness,
speed and lack of round-off error,

Unlike most versions of Forth, MMSFORTH does offer a floating-point
package as an option. This option leans heavily on your computer's BASIC
ROM to save space and speed (it's in fast machine code and it's already
aboard, so no extra RAM). For numbers which vary over a wide dynamic
range, think sealing for advanced users (there is an example in the

A5-2 / MMSFORTH USERS MANUAL

CHECKBOOK program) or floating-point for beginners. For more usual
applications, MMS strongly recommends you get to meet your
double-precision instruction set.

MMSFORTH's double-precision word set 1is loaded by entering
DBL-PREC . This loads six blocks of source code. If RAM space is
limited, consider loading the first three blocks, which will provide all
functions except D/ , D/MOD , D* , D*¥/ , and D*/MOD .

A DOUBLE-PRECISION NUMBER IS ENTERED IN MMSFORTH BY
INCLUDING A DECIMAL POINT IN THE NUMERIC INPUT, Thus, 5 places
a single single-precision element on the stack, while 5. places a pair of
elements on the stack, In keeping with 79-STANDARD, the
double-precision representation has the top-of-stack equal to the most
significant 16 bits of the number and the second-on-stack is the least
significant 16 bits. Actually, all numbers entered in MMSFORTH are
remembered as double-precision quantities. The value of the byte variable
#PT indicates if one or two values have been pushed on the stack, If #PT
= 0 then the low-order 16-bit portion of the inputted value has been
pushed on the stack because no decimal point was included in the input.
The variable HI# contains the high order bits of this number., HI# @ can
be used to check for overflow or to create a double-precision entry. If
#PT <> 0 then two values have been pushed on the stack and #PT
indicates the position of the decimal point in the input. #PT=1 if the
decimal point was the last character input, =2 if next to last, ete, Thus,
5. has #PT=1 ; 5.7 has #PT=2 .

Double-precision constants are defined by putting an initial
double-precision value on the stack and using the word 2CONSTANT to
enter it into the dictionary:

5 2CONSTANT XX

Double~-precision variables are automatically initialized with a value of
0.:

2VARIABLE FIVE 5. FIVE 2!

Note: Although MMSFORTH normally initializes variables (CVARIABLE
, VARIABLE , 2VARIABLE , etc.) with a zero, 79-STANDARD does not
require this; it is good general practice to store in a 0 or other value
before other use.

System Extensions / A5-3

A5.1,.1 TABLE OF DOUBLE-PRECISION ARITHMETIC OPERATIONS

Stack inputs and outputs are shown with top of stack on right.

OPERAND KEYS: ubl,ub2 unsigned byte #'s.

n,nl,.. single prec. #'s unl,un2 unsigned single prec. #'s.
d,dl,... double prec. #'s udl,ud2 unsigned double preec, #'s.
f,f1,... flag: true=1, false=0. utl,ut2 unsigned triple prec. #'s.
addr address ugl,ut2 unsigned quad prec. #'s,
Word Stack Aection

M+ (dilnl -> dsum) add single to double,

D+ (dl1d2 => dsum) add double to double.

M- (dinl -> ddif) subtract single from double,

D- (d1 42 -> ddif) subtract (d1-d2).

M* (n1 n2 -> dprod) multiply singles ans. double.

D* (di1d2 -> dprod) multiply doubles ans. double,

M/ (dlnl ~> nquot) (di/nl) single result.

D/ (di1d2 -> d3) (d1/d2) double result.

M/MOD (dinl ->nrng) (d1/nl1) single quot + remainder.
D/MOD (di1d2 -> dr dq) (di/d2) double quot + remainder.
M*/ (d1 n1 n2 -> 42) (d2=d1*n1/n2)

D¥/ (d1d2d3 -> d4) (d4=d1*d2/d3)

D*/MOD (dl1d2d3 -> drdq) as above, but d4 is remainder.
DU/MOD (ug udl -> udr udq) (ug/udl) d quot + d remainder.
DU* (dl ud2 -> uq) (ug = udl*ud2).

D*S (ud un > ut) (ut=ud*un).

T/S (utun -> ud) (ud=ut/un).

DABS (d1 -> d2) d2= abs(dl).

DNEGATE (d1 -> d2) d2=-d1.

D0= (d -> f) f=1 if d=0. else f=0.

D< (dr1d2 ->f)y f=1if d1 < ag2.

DU (udl ud2 -> f) f=1 if udl < ud2.

D= (did2 ->f1) f=1if d1 = d2.

DMIN (didaz2 ->d3) d3= minimum of d1 or d42.

DMAX (did2 -> a3) d3= maximum of dl or d2.

2@ (addr -> d1) feteh double contents.

21 (daddr ->) store double quantity.

2DUP (d ->dd) duplicate dquantity on stack.
2DROP (d ->) throw away double quantity.
2SWAP (diLd2 ->d2d1) reverse top 2 double items,
20VER (did2 =-> dl d2 d1) make copy of 2nd double on stack.
2ROT (d1 d2 d3 -> 42 d3 d1) rotates 3rd number to TOS.
2CONSTANT x (d ->) create double constant x w/value d.
2VARIABLE y (->) create double variable y.

D. (d ->) print double number.,

D.R (dub ->) print d right justified in fld ub,
D#IN (-> d) input double number from keyboard;

if no ".," convert to double.

A5-4 / MMSFORTH USERS MANUAL

A5.2 ARRAYS

The ARRAYS words are generally described in Section 4.4, and
practical examples of their use are scattered throughout the MMSFORTH
source code, the sample programs in Chapters 7 and 8, ete., Try using the
SEARCH Utility to locate good examples for study.

A5.3 STRINGS

MMSFORTH implements strings in a manner generally compatible with
Radio Shack (Microsoft) Extended BASIC. Read Section 5.2, then try your
own experiments and look over the Programs Menu for good examples of
use,

A5.4 RANDOM

Use RANDOMIZE to start your "random™ sequence at an unpredlctable
point, then select values from 1 to n with n RND .,

A5, GRAPHICS

MMSFORTH offers several types of graphies, including the usual use of
alphanumeriecs for pictures and graphs, the EMITting of graphics ASCII
codes such as 191 on TRS-80 and 219 on IBM PC for complete white (see
the PAINT example in Chapter 7), etc. The GRAPHICS Extension adds the
equivalent of the TRS-80 BASIC graphics words SET, RESET, and POINT:
ESET, ECLEAR, and E?.

TRS-80: A double-width graphies set, DSET, DCLEAR and
D?, is also supported. Although the latter set has only half
the horizontal resolution, its uniform horizontal and vertical
resolution scales simplify many displays.

IBM PC: The MMSFORTH low-resolution (ESET) graphics
wordset can be mixed with text, It offers improvements over
IBM's own graphics, including 16 instead of 4 colors
supported at once (if your color display "sees" the intensity
bit), a compatible display on the monochrome display, and the
ability to transport existing MMSFORTH games such as
l(3reakf<)>rth, etc. See B/W&COLOR (A5.11) and SET-COLOR
A5.12).

System Extensions / A5-5

A5.6 SCREEN-PRINT

Load this extension, then direct-dump the secreen display to your
printer anytime you press Alternate-* on the TRS-80 or Shift-PrtSe on the
IBM PC. Screen-printing is ideal for documenting your early experiments
or your problems for later debugging, If you have a printer which can
reproduce the TRS-80 graphics characters (Okidata, Epson, etc.), edit the
printer-driver and/or this extension block to take advantage of your good
luck., Try it on the ALIFE program (LIFE on IBM PC). If it won't load
first, begin by loading ALIFE, then interrupt it with a Break, 55 LOAD
(typical), and restart with ALIFE . This will be necessary anytime a
newly-loaded program FORGETs beneath the routine you have loaded.

Model I: If your Model I has the lower-case hardware modifi-
cation installed, your MMSFORTH System must also have the
lower-case printer-driver option installed (from Block 15) for
SCREEN-PRINT to work,

A5.7 CASSETTE

The MMSFORTH System Diskette is equipped with this extension for
communication with MMSFORTH Cassette Systems, and for using tape as
an alternate data storage medium,

Model III Systems: May run at 500 baud (for Model I tape
format) or 1500 baud, selected by H/L; then respond H for
high speed, or L for low,

IBM PC: Implements the standard IBM PC physical tape
format, normally only for use as an alternate data storage
medium,

DISK-TAPE will move a range of blocks to tape, while TAPE-DISK will
move them in the other direction., RBLK and WBLK may be toggled to the
TAPE mode or back to DISK, by invoking either of these words.

A5-6 / MMSFORTH USERS MANUAL

A5.8 CLOCK

This extension offers time and date capabilities, plus several words
which join them into report lines for a titled INDEX (TINDEX) and a
titled LISTS (TLISTS). You must remember to initialize with SET-TIME
and SET-DATE before using them,

A5.9 TOOLKIT

Some very useful additional routines are kept in this "catch-all"
extension, Bring it in for debugging, etc. Change its words according to
your preference, or add additional blocks as required. (Two following
blocks are located there for this purpose.)

Try our words .S and TRY to learn how the stack operates, and use
them later for debugging your advanced stack-manipulating words.

Use 2EDIT and 2EDITS to compare two versions of the same block or
two versions each of a series of blocks, respectively. These routines are
ideal for locating small changes in two versions of a program, etc. They
set up a matched pair of blocks for use with Alternate-E, the Editor's
Exchange funetion. Just flicker the two blocks and any changes will show
dramatically., Then edit and Save the screen, or Quit and proceed to the
next set.

System Extensions / A5-7

A5.10 LONG-ADDRESS WORDS (IBM PC ONLY)

MMSFORTH, like all 79-STANDARD versions, handles its memory
addresses as single-precision (16-bit) numbers, Thus, the highest address
it can directly identify is 65535, or "64K",

64K is a large enough span to accomodate all possible memory
addresses on the TRS-80, and enough addresses for any practical Forth
program, However, the IBM PC permits up to a Megabyte of RAM. This
additional capacity is not needed for program space, but it ecan prove of
value for the storage and manipulation of large files, etc. So MMSFORTH
V2.1 provides another extension, LONG-ADR, to permit double-precision
(32-bit) memory operations. '

Most of the LONG-ADR wordset has an obvious and direct relationship
to its single-precision equivalent words: LC@ , 1@ , L2@ , LC! , L! ,
L2! , LCMOVE and LKCMOVE . LFILL and LWFILL are both equivalent to
FILL except that LFILL takes the long-address (32-bit) source, word
(16-bit) count, and 8-bit character to be filled, while LWFILL takes the
long-address (32-bit) source, word (16-bit) count, and 16-bit word to be
filled, IDUMP is the long-address equivalent to DUMP , taking a double-
precision (32-bit) address and a word (16-bit) count. .

S>L is a final word in the LONG-ADR Extension wordset., It converts
"short-to-long"; that is, a short (16-bit) address to a long (32-bit)
address.,

A5,11 B/W&COLOR (IBM PC ONLY)

This optional extension block is only for the special case where a
Color Graphies Adapter and a Monochrome Adapter are installed together
in one IBM PC computer. In this case, compiling this block permits
intelligent manipulation of both boards and their respective video displays
by the Forth program or from the keyboard.

Booting the system with this option compiled will default to the
monitor-type settings on Switech 1 of the IBM PC's System Board., The
words COLOR and B/W reinitialize and switch over to their respective
displays.

You may wish to shift video output between the two displays, without
reinitializing the "new" sereen's setting; i.e., in displays where the prior
settings, whatever they were, should be continued. Two other words,
TO-COLOR and TO-B/W, are provided for this purpose.

A5-8 / MMSFORTH USERS MANUAL

A5.12 MORE IBM PC WORDS: BOX, SET-COLOR, SET-WINDOW

The following words are not properly extension wordsets, as they are
compiled within the IBM PC's standard MMSFORTH V2.1 wordset. Because

they are new to MMSFORTH, for IBM PC only and deserve special mention
as such, we will treat them here as if they are another special wordset.

BOX is used for the special window borders in the Full-sereen Editor
(both the main one and the view of the one-line buffer at PAD), in
NOTEPAD, etc. Its parameters are described in the comment adjacent to
its definition on Block 52. For an interesting graphies use of BCX, try
the following:

: BOXES 0DO 10 410113 * BOX LOOP ;
PAGE 18 BOXES

SET-COLOR defines the present video display attributes - color,
blinking, ecolor reversal, underline in monochrome, ete. It takes the
background and then the foreground color code from stack., Monochrome
examples: 0 7 SET-COLOR for standard, 7 0 SET-COLOR for reverse
video, 0 15 SET-COLOR for high-intensity, 0 1 SET-COLOR for
underline, 0 9 SET-CCLOR for high-intensity and underline, ete. RGB
color examples: 0 7 SET-COLOR for standard, 7 0 SET-COLOR for
reverse video, 8 7 SET-COLOR for blinking, 0 15 SET-COLOR for bright
white, 4 14 SET-COLOR for more color, etc, See the hardware
documentation (or the BASIC word, COLOR) for more information on
attributes, or analyze our examples on the System Diskette.

On a RGB color display, SET-BORDER takes a single color code for
the border setting, in a complementary manner to SET-COLOR.

COLOR? tests which display board is active to see if ecolor is
available, If so, it returns a 1; if not, a 0., See the Kaleidoscope
demonstration program, KSCOPE, for a clever use of COLOR? in
conjunction with a random NEW-COLOR word.

SET-WINDOW defines windows such as W/0, the default window. The
series of windows defined in the demonstration program on Bloeck 148
looks spectacular in color, and shows some of the flexibility of this
sereen~-allocation technique. Note that the second parameter defined is the
combined background-foreground color codes for the window; in HEX, the
two values are the two digits.,

A5.13 LIST OF NEW IBM PC WORDS

System Extensions / A5-9

The following are new MMSFORTH Version 2.1 words introduced for the
IBM Personal Computer, Their definitions may be found in the MMSFORTH

Glossary, Appendix A9,

GTC ENCODE
P-IT P&C

0C! 0ca
PC@ PC!
MOVE-CHRS-TO-SCRN
HSYNC C=

PUT-CHRS GET-CHRS
TO-COLOR TO-B/W
SET-BORDER SET-COLOR

DISP-B# BOX
OUT/WORD ?CLR
SCAN-CODE GET-CHR
P@ P!
MOVE-CHRS~FROM~-SCRN
UNLN-CUR FULL~-CUR
COLOR? COLOR
>B:D B:D>
SET-MODE IBM

PINIT
CRESET
#CHRS

M-

CUR-POS
NO-CUR

B/W
SET-WINDOW
M.3

Special Printer Settings / Page A6-1

A6.,0 SPECIAL PRINTER SETTINGS

Here is specific information on our special printer drivers. Note that
your printer may need to have some of its switeh positions reset in order
to provide best performance,

IBM PC CABLE MOD: Some printers will run significantly
faster if the standard IBM PC parallel printer cable is
modified carefully, as follows: remove the wire from Pin 10
(-Acknowledge) at the printer end of the cable and attach it
onto the one on Pin 11 (+Busy). To determine whether this
modification will help your printer, first use the Main Menu's
Defaults utility or FORTHPRINT's "Set new printer-driver"
option to reduce the printer buffer size to 2 characters, If
this increases printing speed, the modification is likely to
help.

A6.1 STANDARD PRINTER DRIVER

Extensions (toggle function on and off):

TgO0ORPC | ~a0

Comments:

sub-seript, not supported.

Super-seript, not supported.

tab to next printer tab position, set with TB= (not a toggle)
dash-out, not supported.

underline, not supported,

alternate font, not supported.

condensed, not supported.

enhanced, not supported.

alternate width, not supported.

red, not supported.

Only Tabs are supported on the standard printer driver. The
implementation of all other features is hardware-dependent,

A6-2 / MMSFORTH USERS MANUAL

A6.1 ERROR MESSAGES

MMSFORTH has simple and effective diagnostic messages, They tell
you what the problem is, and if they occur while compiling from blocks
they also report the block, line and column numbers at which the
offending word was found, If you wish, you then can directly "error-edit"
that block by entering EEDIT . Error messages are not terminated with an
ok .

A6,1,1 Compile Error Messages

xxx ? This most common FORTH error means the word xxx is not in
the dictionary and cannot be converted to a valid number using the
current BASE. Not in the dictionary does not mean the word is unknown
to the Forth system, but that it cannot be found in the particular

vocabularies it searched,

A not-so-simple explanation of vocabularies: FORTH is the
trunk vocabulary and vocabularies defined in FORTH form
branches from this trunk; for example, EDITOR and
ASSEMBLER. We consider FORTH the father branch; EDITOR
and ASSEMBLER are son branches of FORTH and sibling
branches to each other., Vocabularies defined in branch
vocabularies form sub-branches. A search proceeds from the
CONTEXT branch and continues to the trunk through all
father, grand-father, great-grand-father branches but not its
siblings or siblings of its father, grand-father, etc.

A vocabulary is made the CONTEXT vocabulary by using its name,
Words are defined into a CONTEXT vocabulary by using its name followed
by DEFINITIONS ; e.g., EDITOR DEFINITIONS . After this statement all
new words are entered into the EDITOR vocabulary, until a new
DEFINITIONS clause is invoked. You can confirm which words are in
which vocabulary: in theory by consulting the Glossary, in practice by
entering FORTH CATALOG or EDITOR CATALOG , ete. Remember to
reenter FORTH when you are done,

3 2 This compile (semicolon) error is caused by unbalanced conditional
or loop structures. Forth is saying, "You're not really ready to compile
that definition, are you?" Look for a missing ; , THEN , UNTIL , or
similar conditional imbalance,

ok: is a warning issued when an otherwise proper compiling operation
is entered (normally, from the keyboard) before it is logically complete.
Just key in the rest of the definition and press Enter again when done.

2Dup-name: xxx is a warning issued when compiling a word whose name
has already been used and is found in the current search path. Duplicate
names are allowed and are quite desirable in some instances; this warning

Trouble Shooting in MMSFORTH / A6-3

is given because you may be unable to access the previous definition when
this new word is also in the dictionary. To inhibit 2Dup-name: messages
from your final application programs:

0 21 MMS 25 + C!

Stack empty is an error message given when the outer interpreter
recognizes that the stack pointer is beyond its lower limit, Note that it
only recognizes the problem when the outer interpreter sees it; thus, be
careful not to underflow the stack with a bad routine such as:

: TROUBLE BEGIN ., 0 UNTIL ;
See Section 6.2.1 for some related no-no's,

Dictionary full is an error message to warn the user that there is very
little memory left between the stack and the dictionary.

Page A6-4 / FORTHWRITE USERS MANUAL

A6.4 NEC SPINWRITER 3550 (for IBM PC) DRIVER

Extensions (toggle function on and off):

s sub-seript, spaces down 1/2 line.

S Super-seript, spaces up 1/2 line.

t tab to next printer tab position, set with TB= (not a toggle).

- dash-out 2ll code between this open mark and an identical
close mark,

u underline code between this open mark and an identical close
mark,

a alternate characters on two-font thimbles; characters @ to Z
(upper-case) then use these additional characters,

e condensed, not supported.

e enhanced - shadow printing.

w alternate width as in PS/10. Use W2=12, W2=10, or W2=15 to
select these as alternate widths for the 10-pitch default.
r red portion of bi-color ribbon.

Comments:
Set thimble-select switches for 10 piteh wheel (both down).

Without modifying IBM PC's parallel printer cable, some mistyping is
likely (see A6.0).

Always set Local/Remote switeh to Remote.
Red-ribbon use requires setting switeh under ribbon cartridge.

Proportional thimbles do not work with standard drivers, or with
Alternate extension (but PS/10 driver supports Alternate for appropriate

thimbles).

TRS-80 with parallel Spinwriters: Use the Defaults option on the Main
Menu to reset the number of characters per interrupt from 10 to 35.

Trouble Shooting in MMSFORTH / A6-5

A6.2 SYSTEM LOCK-UPS, FORCED REBOOTS AND NEAR-MISSES

MMSFORTH is a relatively forgiving environment with simple and
effective error comments., However, one of the more puzzling introductory
aspects of Forth is the ability to "lock up" the entire system with no
cursor, In this event, the disk system programmer can simply reboot; in a
few seconds the system will be back to debug his/her program or to avoid
the improper entry.

Sometimes the disk user would like to avoid reloading a large and
slow-loading program, or the tape user won't want to wait several
minutes to reboot, There may be a faster way. Usually the Forth program
is still in RAM and, if you are using a TRS-80, THERE IS A DIRECT
WAY TO RECOVER IT. Boot your TRS-80 into Level II BASIC. (If you
are using an Expansion Interface Unit or a Model III with disks, be sure
to hold down the Break key while pressing the Reset button.) Press Enter,
then enter SYSTEM , finally enter /19200 (that's the entry point of
MMSFORTH). If you're lucky, you're back in business! With an Expansion
Interface or Model III disk, the first lines of the current block will be
corrupted; use an EMPTY-BUFFERS to ignore it.

The IBM PC does not support any equivalent manuever,

The ability to lock up the system is not an accident of Forth design.
Rather, it is the result of giving the programmer unusual access to the
computer itself - one of the strongest features of Forth., The programmer
is left to provide further limitations when desired for a particular task, In
the absence of limitations, the lock-up can occur in several ways. Usual
causes are "blowing the dictionary" or asking for something in a way the
computer understands differently.

A6,2,1 Example (Blowing the Dictionary):

You are having a marvelous time because you have just discovered loop
construets, You write the simple routine:

: TROUBLE BEGIN 13 0 UNTIL ;

As soon as you try it out, you hang the system and even pressing the
Break key is of no use. What hit?

Your computer's available RAM may be large, but it never is infinite.
You have just found a very efficient way to overwrite all available
memory and then some by creating a rapidly growing stack with an
insatiable appetite, After it fills all descending bytes of open space with
single-precision 13's, it sails on down into the top of the diectionary with
obviously disastrous results. Congratulations, you've created a monster!

A6-6 / MMSFORTH USERS MANUAL

In this particular case, you can even examine the damage your monster
has wreaked, Do a warm restart (press Reset without powering down),
then enter:

HERE 2000 DUMP

See all those single-precision (two-byte) 13's which were packed in at
your bidding? Other bad things could go wrong, too. So from now on, be
good! After crashing in this manner on an important operation, we
recommend a ecold restart; i.e., after powering down for at least 30
seconds,

A6.2.2 Example (Nearly Blowing the Stack):

You have just LOADed the appropriate blocks to run the SORT demo
on your 16K MMSFORTH System Tape. Then you press Break, try a Forth
routine from screen, and reLOAD the SORT blocks. You get a Dictionary
full message. What happened?

If you had exited the SORT program by entering STOP from its menu
screen, the program's exit code would have executed a FORGET TASK to
remove the SORT code from the Forth Dictionary, After pressing the
Break key you could have done the same, But instead you retained this
program, which nearly fills available space in your 16K RAM; then you
attempted to reLOAD. Wrong! To LOAD is to compile into Dictionary, and
no way do you have room for a second complete set of SORT words in
your tightly-packed RAM! The LOAD proceeds and the Dictionary grows
up into higher RAM, until it threatens to eat up the last remaining bytes
where the User Stack is growing down and to chew on into it. Before the
stack and system are blown, MMSFORTH saves the day with its
"Dictionary full" error message!

FORGET TASK, and run the underlying program.,

A6.2.3 Example (Simple Misunderstanding Between Friends):

You attempt to copy a block to Block 40, but later discover the old
contents in that bloek. Still later, you find some unexpected material in
Block 64, What's wrong?

Most probably you were in HEX (Base 16) rather than DECIMAL mode,
So the block was written to Hex 40, which is Decimal 64. Copy it into
Block 40, If the old Bloek 64 was important, copy it back from a backup;
or start typing! This time, remember to say DECIMAL before it's too
late!

Trouble Shooting in MMSFORTH / A6-7

A6,2,4 Example (Invisible Ink on IBM PC):

Can't see what you are typing? SET-COLOR permits you to set
background and foreground colors equal, but that doesn't mean you'll like
it! 0 7 SET-COLOR. resets white on black,

A6.2,5 Example (Unusual Display Mode on IBM PC):

You just finished editing a block, and the computer hasn't returned to
a full screen display. What's worse, you've typed into the lower right
corner of the small display, and only the final letter can now be changed!

That will remind you to exit the Editor with an Alternate-Q, not a
Break! Press Enter, then reset the normal SET-WINDOW attributes with
W/0 PAGE and Enter,

A6-8 / MMSFORTH USERS MANUAL

A6,3 AMNESIA

As our term suggests, in this case the system doesn't remember much
of anything. You may be in the wrong Vocabulary - enter FORTH and try
again, If the system returns FORTH ? you have blown the Dictionary.
Congratulations, there is no recovery.. You have messed up the address
pointers which are essential to Forth's indirect threaded code (ITC) and
the lower words can no longer be found., Re-boot!

Probable causes are storing past the limits of an array, storing a
string that is longer than the maximum length of its $VARIABLE, or
using bad limits on CMOVE, <CMOVE, FILL, BLANK, ERASE, etc,

To prevent the first, check the number of operations vs, size of array,
and which value comes first on stack. To prevent the next, force a proper
LEFT$ truncation before storing the string. If the others give you
trouble, you can debug by temporarily adding a dummy word instead, such
as:

: MOVEX MOVE ... QUIT ;

Use this to do the operation and to examine what is on stack at that
point.

Trouble Shooting in MMSFORTH / A6-9

A6.4 AND OTHERS

Resourceful Forth programmers can find other ways to cause these and
related troubles., To mention a few:

1, Pressing Shift-0 on a TRS-80 Model I which does not
have lowercase installed., (Repeat the operation to
escape).,

2. Mixing up @ and C@, ! and C!, etc.

3. Inserting an inappropriate stack operation between a
paired >R and R> .

4, Running a 32K, 48K, or 64K RAM-sized program on a
smaller-sized MMSFORTH System., You can check available
RAM space before and after loading, with 'S PAD - U. ,
or by using the .MEM word in TOOLKIT.

5. Permitting two lines of Forth code to accidentally run
together, Remember that your editing must account for
multiple-line wraparound during the LOAD operation.

A6.,5 IT COULD BE HARDWARE

We hope not but it does happen - a particular bug in a RAM chip,
poor circuit trace, ete., can look like a bug in one program only. If your
program misbehaves identically on an equivalent computer (running at the
proper RAM size), it's not a hardware problem.

One unusual but possible hardware incompatability concerns disk drives
which, through design or misadjustment, take too long to come up to
speed, Expect this if MMSFORTH backups successfully onto diskettes
formatted by DOS but not onto those formatted by MMSFORTH. (The
MMSFORTH FORMAT routine wrote the first bit of the sector header
before the disk arrived at the right spot; later, other MMSFORTH routines
cannot find a proper sector header.) CUSTOMIZE offers an easy way to
increase MMSFORTH's disk start-up speed delay to compensate. Several
other adjustments are possible - advanced users are referred to Appendix
Al2,

A6-10 / MMSFORTH USERS MANUAL

A6.,6 IS YOUR MMSFORTH MISBEHAVING?

Before sending a copy of this form to MMS, pare down your program
or data code to a minimum, eliminate as much accessory hardware as
possible, and test on another similar computer, printer, ete. If it still
fails, telephone to see if MMS already has the answer before mailing in a
documented error report, Make your form legible and complete; if the
error-provoking commands, source code or data take more than three
lines, please provide a listing and a diskette in standard MMSFORTH.

; Date of report:

REPORTER - Print your name, address, and phone number(s). Also
rate yourself as a beginning, intermediate or advanced user of
MMSFORTH:

EQUIPMENT PRODUCING THE PROBLEM - List the computer,
printer, disk drives, ete. Any unusual hardware or related problems?

SOFTWARE COMBINATION USED AT TIME OF ERRCR - List each
MMSFORTH software module by name, version, serial number, and
date of manufacture (on the original's write-protect tab):

WHAT GOES WRONG? - Be specific, and provide sample code which
will fail, Does it fail always, about 50%, rarely? What error message

is given, if any?

USER'S SUGGESTION FOR CORRECTION (if any):

MILLER MICROCOMPUTER
SERVICES

61 LAKE SHORE ROAD, NATICK, MASS. 01760
(617) 653-6136

=========== PART II OF MMSFORTH SYSTEM INSTRUCTIONS, PLUS USER COMMENT FORM ===========

Thank vou for properly registering your new MMSFORTH SYSTEM. This remaining part of
the MMSFORTH SYSTEM instruction set supplements your initially supplied information.
Merge the new pages and any replacement pages into place.

MMS hopes you will find the MMSFORTH SYSTEM and instructions among your most useful
software acquisitions. To assist us in reaching that goal, we invite you to keep simple
notes on the "rough edges' you experience while learning to use this package. MMS will
appreciate your notes on the form below or in equivalent format, to help us to make
MMSFORTH and your future purchases from MMS still better.

COMMENTS -~ TO BE FORWARDED TO MMS
MMSFORTH SYSTEM INSTRUCTIONS:
(Where possible, cite page number, specific phrase, nature of problem, suggested

rewording, etc.)

MMSFORTH SYSTEM PERFORMANCE:
(pid you find an operation improper or undesirable? Suggest changes where

appropriate.)

MARKETING PERFORMANCE:
(Are MMS and your dealer treating you right? Value for dollar, prompt delivery,

condition of merchandise, availability of reasonable support, etc.)

OTHER SUGGESTIONS:

(Use reverse side or additional pages as needed.)

User's name: .
MMSFORTH System S/N: . PLACE

MMSFORTH SYSTEM COMMENTS
MILLER MICROCOMPUTER SERVICES
61 LAKE SHORE ROAD
NATICK, MASS. 01760

TRS-80 Memory Map / AT-1

Figure 1 - TYPICAL MMSFORTH MEMORY MAP (V2.0, TRS-80 with 32K RAM)
(NOTE: To display addresses, use U.)

Hex

0

3000

3C00
4000
42FC
46FE

4BOO

4LDBF

62D1

T8AC

BFOO

BFFF

Decimal

0

12288

15360
16384
17148
18174

19200

19903

25297

30892

48896

49151

HOUPZ0HMAOMHUYD

MEMORY MAP
: Level TII :
: BASIC ROM :
: Keyboard :

: & other I/0

B o o o - ae w me mm e e e e e e wm O
R R Y

O o omt w a a ww w w w ww ww e v e O
M- - I

-

:Forth source code:
: not provided :

o - - . e - .-

:Forth source code:
: provided
Application Pgn
: compiled from :
source code

-

R

¢ Available RAM

: (Optional :
: Dynamic :
: Data

: Area)

- - - - 2 oo
Parameter (User):
: Stack :

2 - -

P e o e m ma e e T e oww ww e ww we $
P S 2R

Addl., Buffers :
(Optional)"
1026 bytes each

O o e e e e e e e e &
P e E e mERmREmSZSTZ,

Forth Word(s)
for Address

11 MMS
(Enter Forth)

' FORTH 8 -

' OCTAL 8 -

' EEDIT 18 +
(after FORGET DIR)

HERE

PAD (65 above HERE)

'S

SO é
RP € (in Assembler)
11 MMS 3 + € 1-

= RAM "ceiling"

Actual Top of RAM

TRS-80 CATALOG Listing / A8-1

A8,0 CATALOG LISTING OF MMSFORTH (TRS-80)

A CATALOG listing of the current vocabulary may be made at any
time in standard MMSFORTH. Just enter CATALOG, preceded by the
vocabulary name (FORTH, EDITOR or ASSEMBLER) if required. You can
pause the display with a Shift-@ and restart it again with any other
printing key, or you can abort the display by pressing Break,

Your own CATALOG listings will show each word's number of
characters (up to 31) immediately followed by an I if the word is to be
immediately executed while compiling a definition, the first three
characters of the word, and a character indicating the hash~code value of
the following characters, If the word has exactly four characters, all four
characters will be shown, instead. MMSFORTH shows a Dup-name report
when compiling a definition whose CATALOG name coincides with another
existing in the present dictionary.

The CATALOG listing on the following page has been modified to show
entire wordnames but is in the usual order, starting from the top (the
most recently added word)., It also has had the RANDOM Extension
wordset added to the over 300 words of MMSFORTH's basic FORTH
vocabulary,

This listing has been enhanced with several lines and a box. The box
surrounds the RANDOM wordset, demonstrating that the process of calling
RANDOM from the DIRectory did a FORGET DIR to remove the DIRectory
wordset, loaded the required blocks, and then replaced the DIRectory
wordset on top by calling DIR itself before completing the action, Calling
DIR after forgetting it is possible because the forgotten word was a
Dup-name and the lower definition still exists immediately above (to the
left on this CATALOG) DIRBLK. This first definition of DIR is simply
DIRBLK LOAD so calling it recompiles the DIRectory words into the
dictionary. The Auto-command in CUSTOMIZE should be set to DIR in
order to accomplish this on boot-up, as on your original System Diskette
(whose precompiled dictionary stopped at EEDIT).

The other lines across this CATALOG listing show which words are
deleted in common RAM-saving calls: FORGET *, FORGET DIRBLK, and
FORGET OCTAL. OCTAL is the lowest word for which source code is
provided, so we FORGET OCTAL before reprecompiling basic MMSFORTH
if modifications are made in Blocks 16-39, Block 16 requires that we shift
into HEX, so we must say HEX before saying FORGET OCTAL - once
OCTAL is forgotten, HEX will not be in the system either!

A8-2 / MMSFORTH USERS MANUAL

The CUSTOMIZE Utility resets a few parameters and then rewrites the
lowest blocks on your Drive 0 with the present version of compiled code -
including whatever you have compiled into the dictionary sinece booting,
CUSTOMIZE also does a FORGET DIR so be sure to have a second DIR
aboard or it will forget the lower DIR instead, probably an error which
will require starting again! Once you have learned to use CATALOG, it
should be scanned before using CUSTOMIZE to see that your dictionary
contains just what is intended,

A8.1 CATALOG LISTING OF FORTH VOCABULARY (TRS-80)

CATALOG

9 CHECKBOOK 7 NOTEPAD 10 BREAKRFORTHS5 ALIFE 4 LIFE

5 SORTS 5 S$SORT 5 GUESS 8 PROGRAMS 9 CUSTOMIZE
7 ALLCAPS 9 TRANSLATE 6 SEARCH 6 COPIES 6 BACKUP
6 FORMAT 9 UTILITIES 7 TOOLKIT 5 CLOCK 8 CASSETTE
12 SCREEN-PRINT GRAPHICS 6 RANDOM 7 STRINGS 6 ARRAYS
8 DBL-PREC 10 EXTENSIONS4 +FOR 3 +IS 2 =->

5 MODEL 3 DIR | 9 RANDOMIZE 3 RFR 3 RND

3 RN1 4 SEEE 7 MODULUS 3 MUL [5 EEDIT

1l E 4 EDIT 61 EDITOR 11 79-STANDARD MOVE

7 CONVERT 12 SAVE-BUFFERS CATALOG 5 - NAME 5 INDEX

6 PLISTS 5 PLIST 5 BLIST l L 4 LIST

2 TL 3 ?2TL 4 DUMP 4 COPY 3 SCR

4 OUTP 3 1INP 2 D~ 5 20VER 5 2SWAP

4 ROLL 4 PICK 5 */MOD 2 */ 2 M/

1 7/ 3 MOD 5 M/MOD 4 /MOD 2 M*

1 * 2 ?S 2 C? 1 2 2 U.

3 U.R 5 DEPTH 2 'S 2 =3 2 =2

2 2 =0 5 FLUSH 13 EMPTY-BUFFERS:R

4 PCRT 3 CRT 5 PRINT 6 MARGIN 3 PTC

9 -TRAILING 2 2/ 2 OR 3 MAX 3 MIN

3 NOT 5 BLANK 5 ERASE 4 FILL 6I CASEND
91 OTHERWISE 5I NCASE 51 ACASE 3 DIR 6 DIRBLK
4 BOOT 4 DDEN 4 SDEN 5 LEAVE 21 DO

5I +LOOP 41 LOOP 4 PAGE 1 J 2 It

1l I 2 R 6 SPACES 3 Y/N 3 #IN

5 ENTER 6 <CMOVE 51 ;CODE 4 CODE 5 LABEL
91 ASSEMBLER 6 BUFFER 9 CVARIABLE 8 VARIABLE DEFINITIONS
10 VOCABULARY2I ." 21 (" 6 FORGET 11 !

9I [COMPILEl 5 ALLOT 6I MYSELF 71 LITERAL 41 ELSE

6I REPEAT 41 THEN 5I WHILE 21 IF 5I UNTIL
5I BEGIN 11 [1 1 9 IMMEDIATE 3 HEX

7 DECIMAL 5 OCTAL j 1 1I ; 4 FIND

1T (9 CCONSTANT 8 CONSTANT 6 CREATE 4 TLOAD

5 LOADS 6 NUMBER 3 MMS 5I DOES> 7 COMPILE
8 QUESTION 3 ==> 4 WORD 5 QUERY 6 EXPECT
5 BLOCK 6 BUFFER 7 CURRENT 7 CONTEXT 2 S0

2 DpP 2 UT 3 >IN 3 BLK 6 CURSOR

ANWNONANWHNDNWNDNDE U & W

#PT
LAST
DWTSECS
#

SPACE
QUIT

2-

R>

ROT
ct

0>

>

AND
NEGATE
BUFFDATA
DNEGATE
64*

Re@
UPDATE

NUIWUINNDWDNDNBFENDUOND & &W

HI#
#BKS
DRDSECS
SIGN
CR
ABORT
1-

14
OVER
ce
0<
<>
XOR
M+
U*
TOKEN
PAD
U/MOD
EXECUTE

GTW = W OWA H NN B NN M ORDN S P

EMIT
KEY
$CONT

TRS-80 CATALOG Listing / A8-3

B BB DU DNN B W N NN WA

EBLK
RBLK
(.)
<#
BL
0
1+
HERE
DUP
]
U<
{=
+
>BINARY
2DROP
8*
TYPE
?KEY
EXIT

STATE
D?#
#S
HOLD
PBLK
-1

>R
SWAP
DROP
@

>=

<

ABS
DISKDATA
2DUP
2%
COUNT
CMOVE

I FORTH

MMSFORTH Glossary / A9-1

A9.0 MMSFORTH GLOSSARY (FORTH VOCABULARY)

NOTES:

1,

The following glossary is presented in order of ascending ASCII.
code, In general, it excludes words which appear-in the MMSFORTH
ASSEMBLER vocabulary., It includes key words from the FORTH
voecabulary extensions,

The dictionary vocabulary of each FORTH word is listed, as well as
the screen number in whieh it is defined, the number and type of
stack entries its operation will "take in" and the number and type of
entries it will return to stack.

A "Screen 0" listing implies that the word is precompiled within
TRS-80 Bloeks 0-11, IBM PC Blocks 0-16, or MMSFORTH Tape
System Blocks 1-12, but source code is not supplied.

The first line of each Glossary entry contains the name of the word
and a coded list of attributes in the following order,

a) The vocabulary or extension:
FORTH, ASSEMBLER, EDITOR, DBL-PREC, STRINGS, CASSETTE,
GRAPHICS, RANDOM, ARRAYS, TOOLKIT, CLOCK.
b) The 79-STANDARD Word Set to which it belongs:
STANDARD, EXTENSION, NOT-STANDARD.
c¢) The attributes of the word:
IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
d) The bloeck number where the source code may be found
(TRS-80/1BM PC, or 0 if source code is not provided).
e) The status with regard to the earlier MMSFORTH version 1.9:
NEW, CHANGED, UNCHANGED.
f) How to pronounce the word (if questionable).
g) The stack before and after using the word,
Codes used in this portion are as follows:
1) ?ddr - a value representing the single-precision address of a
ield.
2) daddr - a value representing the double-precision address of a
field. (IBM PC only).
3) byte - a value representing an 8-bit byte. When in a larger
field, the higher bits are zero,
4) char - a value representing a 7-bit ASCII character code.
5) d - a 32-bit signed 'double' number, The most significant
16-bits, with sign, is on TOS. (NOTE: This is opposite the
way it was done in MMSFORTH V.1.9.)
Values may be from -2,147,483,648 to 2,147,483,647.

A9-2 / MMSFORTH USERS MANUAL

6) ud - a 32-bit unsigned 'double' number.

7) flag - a numerical value with two logical states; 0 = false,
non-zero = true,

8) n - a 16-bit signed integer number in the range -32,768 to
32,767,

9) un - a 16-bit unsigned integer number,

10) $ - a string, Al strings are held in memory as a one-byte
length count immediately followed by the string., When a string
is "put on the stack™ only the address of the length byte is
actually placed on the stack,

11) <name> - An arbitrary FORTH word accepted from the input
stream, :

12) <namex> - an arbitrary FORTH word defined by <name>,

As a user convenience, a short-form listing of the abbreviations
under 4,a-e above is printed at the bottom of each pair of pages.

79~STANDARD source code may be loaded into the MMSFORTH
System without problem, However, MMSFORTH words which are not
in the 79-STANDARD subset are not designed for portability to other
systems and you have agreed not to misuse the MMSFORTH source
code by transferring it. You ecan use MMSFORTH to write
79-STANDARD programs for portability: LIMIT THE PROGRAM'S
MMSFORTH VOCABULARY TO 79-STANDARD WORDS, referencing
this Glossary or the FORTH 79-STANDARD MANUAL to confirm the
appropriateness of your word set.

Words are arranged in ASCII code order as follows
tr FES% &t ()*+,-,/0123456T1T
BCDEFGHIJKLMNOPQRSTU

g h 1 tuv

6
I T
“abedef ijklmnopgrstu

Yo

#>

#BKS

#CHRS

#IN

MMSFORTH Glossary / A9-3

FO,ST,,O,UN,"StOI‘E",(n addl‘ "'>)
Stores number into address,
0 PBLK ! zeroes contents of variable named PBLK.

FO,ST,,0,CH,"number-sign",(udl -> ud2)
Converts the least significant digit of an unsigned 32-bit
binary number to its ASCII equivalent using the current base.
The ASCII character is placed in the output string. This
word works by dividing the double-precision number on the
stack by the base. The remainder is converted to ASCII and
the quotient is left on the stack for further processing.
This command is somewhat equivalent to # in Level II
BASIC's PRINT USING command.
: T# DUP ABS 0 <# # # 46 HOLD #S ROT SIGN #>

TYPE ;
n T# will print n with a sign (if negative) and two digits
after the decimal point.

FO0,ST,,0,UN, "number-sign-greater”,(ud -> addr n)

Ends pictured numeric output conversion. Drops ud, leaving
the byte count of the just created text string in
top-of-stack and its address beneath, suitable for use by
TYPE .

See # (above) for example and further explanation,

FO,NO,UV,0,NE,"number-b-k-s",(-> addr)

Leaves address of character variable containing the current
number of available block buffers, Use CUSTOMIZE to reset
the current number of block buffers. To readjust the
maximum number of block buffers, modify Block 15/20 and
recompile the system,

FO,NO,,0,NE,"number-characters",(-> n) (IBM PC only)
Returns number of character spaces remaining from current
cursor position to end of line in current video window,

FO,NO,,21/38,UN,"number-in",(-> n)

Outputs " ? " and inputs a signed integer number (no
decimal point) and puts the low order 16 bits on the stack.
The high-order 16 bits are stored in HI#. Included blank
characters or other bad input returns 2 _Redo, and prompts
for more input.

Attribute(s): IMMEDIATE, CQLON-DEFINITION, and/or USER YARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-4 / MMSFORTH USERS MANUAL

#PT

#S

$!

$n

$-TB

$.

FO,NO,UV,0,UN,"number-p-t",(-> addr)
1-byte variable containing position of decimal point in last
number input:

0 if no decimal point

1 if decimal point is last character of number

2 if 1 digit follows decimal point, etc.

FO,ST,,0,CH,"number-sign-s",(ud -> 0.)

Converts all digits of an unsigned 32-bit (double-precision)
binary number on the stack, to their ASCII equivalents, using
the current base. The ASCII characters are placed in the
output string. At least one digit will be converted if the
number is 0. Use only between <# and #>. (See # .)

sT,NO,,50/69,UN,"string-store",($ addr ->)

Move the $ to addr for the length of the string.

WARNING: If the string at $ is longer than the space
available at addr, it will overflow and may destroy the
dictionary. Therefore, if in doubt, use LEFT$ to truncate the
string to the correct size.

See Chapter 8, the CHECKBOOK program for usage.

ST,NO,,50/69,CH,"string-quote",(-> $)

Creates a string literal of following characters to " , leaves
its address on the stack, If in a colon-definition, the literal
is placed in-line in the dictionary; if in interpretive mode,
the literal is placed in PAD + 2586,

ST,NO,,51/70,UN,"string-concatenate™,($1 $2 -> §)

String concatenation operator. The string at $2 is appended
to the string at $1 and the result is left in PAD. Leaves
address of PAD.

ST,NO,,52/71,UN,"string-minus-t-b",($ -> §)
Removes trailing blanks from a string whose address is at
top-of-stack,

ST,NO,,50/69,UN,"string-dot",($ ->)
Qutputs string whose address is at top-of-stack,

Vocabulary or Extension: EQRTH, ASSEMBLER, EDITOR, DBL-PREC,

STRINGS,
CLOCK;

CASSETTES, GRAPHICS, RANDOM, ARRAYS, IOOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

$ARRAY

$COMPARE

MMSFORTH Glossary / AS-5

sT,NO,,52/71,UN,"string-array",(nl n2 ->)
A defining word used in the form:

nl n2 $SARRAY <name>
to create a dictionary entry for <name>, consisting of a 1
byte minimum string length nl (maximum 254) +1 and n2+1
elements (indexes 0 to n2), each of length nl+l., The entire
array is cleared to zeroes,
When <name> is later used, it is in the form:

n <name>
where the address of element n is put on the stack,

20 5 SARRAY AR_ok
defines a string array of six elements, where each string is
20 characters plus the length byte long.
To initialize element three:

$" THREE" 3 AR $! ok
To retrieve and print element three:

3 AR $._THREE ok

ST,NO,,51/70,UN,"string-compare™,($1 $2 -> flag)
Compare two strings,
Flag returned is as follows:

If $1=$2, f=0.

If $1<%$2, f=-1,

If $1>$2, f=+1o

$CONSTANT ST,NO,,50/69,UN,"string-constant"

A defining word used in the form:

$CONSTANT <name> .."
to create a dictionary entry for <name>, consisting of the
string starting one space after <name> and terminated at the
n

When <name> is later used the string address of the constant
string is placed on the stack,

$CONSTANT C1 ABC"

Cl $._ABC ok
The only difference between a string constant and a string
variable is that the string constant is initialized and the
length is set to the length of the initial value. There is no
difference is use. Both return the address of the length byte
when invoked,

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER YARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.l.9)

A9-6 / MMSFORTH USERS MANUAL

$T

$VARIABLE

$XCHG

%CONT

Vocabulary
STRINGS,
CLOCK;

CL,NO,UV,60/79,NE,"string-t",(-> addr)
Varisble in which is stored the title for TLISTS and TINDEX.

ST,NO,UV,50/69,UN,"string-variable",(n ->)
A defining word used in the form:

n $VARIABLE <name>
to create a dictionary entry for <name>, consisting of n+l1
bytes (maximum 255) which are all initialized to zero.
When <name> is later used the string address is placed on
the stack., n is the maximum size string which can be stored
in <name>,
The only difference between a string constant and a string
variable is that the string constant is initialized and the
length is set to the length of the initial value. There is no
difference is use. Both return the address of the length byte
when invoked,

ST,NO,,50/69,UN,"string-exchange",($1 $2 ->)

Exchanges contents of the two strings, using PAD for
temporary storage. The two strings should have the same
maximum lengths.

FO,NO,,0,NE,"per-cent-continue” (TRS-80)

May be used to end words which are activated by the Break
key or shift-control-*, so that execution continues normally.
(Only other word which can be used is ABORT.)

FO,ST,IM,17/22,UN,"tick",(-> addr)
If executing, leaves the parameter field address of the next
word accepted from the input stream. If compiling, compiles
this address as a literal; later execution will place this value
on the stack, First searches the CONTEXT vocabulary, then
the CURRENT vocabulary, before giving an error message.
Can be used to find out if a word has been previously
defined or to modify a constant, If CONST was defined as 0
CONSTANT CONST , then:

4 ' CONST ! CONST .4 ok

or Extension: FQORTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOQOLKIT,
T9-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

'S

(n

(.) :

*/

*/MOD

MMSFORTH Glossary / A9-7

FO,NO,,32/39,UN,"tick-s",(-> addr)
Places onto the stack the address of top-of-stack before
execution of 'S .

¢ MEM-SIZE 'S PAD - 5 SPACES U. 5 SPACES ;
prints unused bytes of RAM available,

FO,ST,IM,0,CH,"paren"

Begins a comment, which is terminated by) or end of block.
It must be followed be a space but the) need not be
preceded by a space. The comment is ignored by the system
and may appear inside or outside a colon-definition,

FO,NO,IM,17/22,UN,"paren-quote"

Alternate to (, it allows a) to be embedded in a comment
without closing it. " is used to close (" .

(" IMBEDDED CLOSE-PARENS (LIKE THIS) ARE NOW OK"

FO,NO,,0,UN,"paren-dot-close-paren",(n -> addr n)
Converts n to its ASCII equivalent, leaving its address and
byte count on the stack, suitable for use by TYPE .

DP,NO,,44/63,NE,"paren-d-dot-paren”,(d -> addr n) ‘
Converts d to its ASCII equivalent, leaving its address and
byte count on the stack, suitable for use by TYPE ,

FoO,ST,,33/51,UN,"times",(n1 n2 -> n3)
Leaves the product of nl times n2.

4 3 * , 12 ok

FO,ST,,33/51,UN,"times~-divide",(nl n2 n3 -> n4)

Multiplies nl by n2, then divides by n3. n4 is rounded toward
zero, The product of nl times n2 is maintained as a 32-bit
value for greater precision,

100 4 3 */ ,_133 ok

FO,ST,,33/51,UN,"times-divide-mod",(nl n2 n3 -> n4 n5)
Multiply nl by n2, divide the 32-bit result by n3 and leave
the remainder n4 and the quotient n5., The remainder has the
same sign as nl,

100 4 3 */MOD , ..133 1 ok

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFCRTH V.l1.9)

A9-8 / MMSFORTH USERS MANUAL

+LOOP

+TINDEX

+TLISTS

Voeabulary
STRINGS,
CLOCK;

FO,8T,,0,UN,"plus",(n1 n2 -> n3)
Leaves the arithmetic sum of nl plus n2.

Fo,ST,,0,UN,"plus-store”,(n addr ->)
Add n to the 16-bit value at the memory address on TOS.

FO,ST,IM&C0,22/39,CH,"plus-loop™,(n ->)

Used instead of LOOP when an increment (n) other than +1
is desired. The loop is terminated if the index equals or
exceeds the limit when the increment is positive or is less
than the limit when the increment is negative. Index and
limit ere signed integers in the range -32,768 to 32,767,

CL,NO,,60/79,NE,"plus-t-index",(nl n2 ->)
Does a TINDEX without resetting TPAGE to 1.

cL,NO,,60/79,NE,"plus-t-lists",(nl n2 ->)
Does a TLISTS without resetting TPAGE to 1.

FO,ST,,0,UN,"comma”,(n ->)
Compiles n into the next two bytes in the dictionary at
HERE and increments HERE by two.

FO,ST,,O,UN,"H‘IinUS",(I'll n2 "> 1’13)
Subtracts n2 from nl and leaves difference n3.

123 23 - ._100 ok

FO,NO,IM,0,NE,"next-screen”

During a screen load, ignores following words on the current
screen, sets UT to 1 to load one following sereen via same
bloek buffer,

FO,NO,,O,UN,"minUS—One",("'> "‘1)
Pushes -1 onto the stack (shortens dictionary search).

or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, IOOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

MMSFORTH Glossary / A9-9

-TRAILING FO,ST,,26/40,UN,"minus-trailing",(addr nl -> addr n2)

NAME

MEM

S

Reduces the character count (in nl) of the string at addr by
the number of trailing blanks (blanks to the right of the
string), leaving the new character count n2,

FO,ST,,0,CH,"dot",(n ->)
Outputs n converted according to BASE followed by one
blank. Only a negative sign is displayed.

FO,ST,IM,17/22,CH,"dot-quote"

Accepts following text until " or end of block for the input

stream, If executing, outputs immediately., If compiling,

compile so text will be output on execution,

: GREETING PAGE 10 25 PTC ." HI THERE!" CR ;
GREETING

or PAGE 10 25 PTC ," THIS GOES OUT RIGHT AWAY" CR

FO,NO,,36/54,NE,"dot-name",(addr ->)

Given addr of a name field in the dictionary, outputs the
length, I if immediate, the 1st three characters of the name,
and an interpretation of the hash code,

TO,NO,,61/80,NE,"dot-mem"
Cutputs the number of bytes between PAD and 'S,

FO,NO,,21/40,UN,"dot-r",(nl n2 ->)
Qutputs nl according to base, right-justified in a field whose
width is n2, If n2 is smaller than the characters required for
nl, no leading spaces are given,
: GRAPHICS CR 64 0 DO I 128 + DUP 6 .R SPACE

EMIT LOOP CR ;

TO,NO’,61/80,NE,"dOt‘S",(ves =2 een)
Output the contents of the user stack without saltering those
contents, Displays TOS on right,

Attribute(s): IMMEDIATE, CQLON-DEFINITION, and/or USER YARIABLE;
Bloek# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-10 / MMSFORTH USERS MANUAL

/MOD

0>

0C!

oca

Vocabulary

STRINGS,
CLOCK;

FO0,S8T,,33/51,UN,"divide",(n1 n2 -> n3)
Divides nl by n2 leaving quotient n3. n3 is rounded toward
ZEero.

52/ .2 0k

FO,ST,,33/51,UN,"diVide’mOd",(l’ll n2 "> n3 n4)
Divides nl by n2 leaving remainder n3 and quotient n4. n3
has the same sign as nl.

52/MOD..21 ok

FO,NO,,O,UN,"ZGI‘O",("‘> 0)
Pushes 0 onto the stack (shortens dictionary search),

DP,NO,,43/63,NE,"zero~-dot",(-> d0)
Pushes double number 0 onto the stack (shortens dietionary
search),

FO,ST,,0,UN,"zero-less",(n -> flag)
True if n is less than zero (i.e., negative).

FO,ST,,0,UN,"zero-equals",(n -> flag)
True if n is equal to zero.

FO,ST,,0,UN,"zero-greater",(n -> flag)
True if n is greater than zero (i.e., positive).

FO,NO,,49,NE,"zero-c-store",(byte addr ->) (IBM PC
only)
Stores byte in addr in segment 0.

FO,NO,,49,NE,"zero-c~-feteh",(addr -> byte) (IBM PC
only)
Fetches byte from addr in segment 0.

or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NQT-STD; ‘

0TPAGE

1+

2$ARRAY

MMSFORTH Glossary / A9-11

CL,NO,,60/79,NE,"zero~t-page"
Reinitializes TPAGE counter to 1 for TLISTS and TINDEX.

FO,NO,,O,UN,"OHG",("‘> 1)
Pushes 1 onto the stack (shortens dictionary search).

FO,ST,,0,UN,"one-plus",(n -> n+l)
Increments n by 1.

FO,ST,,0,UN,"one-minus",(n -> n-1)
Decrements n by 1.

FO,NO,,0,UN,"sixteen-times",(n -> n*16)
Multlphes n by 186,

DP,EX,,43/62,CH,"two-store",(d addr ->)
Stores d at addr for four bytes. High-order portion of double
number is in first word and is higher on stack,

sT,NO,,52/71,UN,"two-string-array™,(nl n2 n3 =>)
A defining word used in the form:

nl n2 n3 2$ARRAY <name>
to create a dictionary entry for <name>, consisting of 1 byte
for the high-row-index n2 (maximum 254) +1, 1 byte for the
maximum-string-length nl (maximum 254) +1 and n3+1
columns (indexes 0 to n3) of n2+l1 rows (indexes 0 to n2),
each of length nl+l., The entire array is cleared to zeroes,
When <name> is later used it is in the form:

n4 n5 <name>
where the string address of element n4,n5 is put on the
stack,
Define a two-dimensional string array named Ql, of 8
columns by 6 rows with 20-byte strings:

20 5 7 25ARRAY Q1
Set Element 1,5 equal to Element 2,7 :

27Q1 15Q1 ¥

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER YARIABLE;
Block# (TRS~-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-12 / MMSFORTH USERS MANUAL

2* FO,NO,,O,UN,"tWO*timES",(n '-> 1'1*2)
Doubles n,

2+ F0,ST,,0,UN,"two-plus",(n => n+2)
Increments n by two.

2_ FO,ST,,O,UN,"tWO-minUS",(n "'> n"'z)
Decrements n by two,

2/ FO,NO,,26/0,UN,"two-divide",(n -> n/2)
Halves n,

. 2@ DP,EX,,43/62,CH,"two~feteh",(addr -> d)

Leaves the contents of the four consecutive bytes beginning
at addr on the stack as a double number,

The first word is the high-order half and is on the top of
stack.

2ARRAY AR,NO,,49/68,UN,"two~array",(nl n2 ->)

A defining word used in the form:

nl n2 2ARRAY <name>
to create a dictionary entry for <name>, consisting of the 1
byte high-row-index nl (maximum 254) +1, and n2+l1 columns
(indexes 0 to n2) of nl+l rows (indexes 0 to nl) of
two-byte elements.,
When <name> is later used it is in the form:

n3 n4 <name>
where the address of Element n3,n4 is put on the stack,
Define a two-dimensional array named Al, 8 columns by 6
rows.

5 7 2ARRAY Al
Set Element 1,5 equal to 7:

715 A1

Vocabulary or Extension: FORTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTES, GRAPHICS, RANDOM, ARRAYS, TQOLKIT,
CLOCK; 79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

2CARRAY

MMSFORTH Glossary / A9-13

AR,NO,,49/68,UN,"two-c~array",(nl n2 ->)
A defining word used in the form:
nl n2 2CARRAY <name>
to create a dictionary entry for <name>, consisting of the 1
byte high-row-index nl (maximum 254) +1, and n2+1 columns
(indexes 0 to n2) of nl+l rows (indexes 0 to nl) of one-byte
elements,
When <name> is later executed it is executed in the form:
n3d n4 <name>
to put the element address of Element n3,n4 on the stack,
Define a two-dimensional byte array named Al, 8 columns by
6 rows,
5 7T 2CARRAY Al
To set Element 1,5 equal to T7:
715 A1 C!

2CONSTANT DP,EX,,43/62,CH,"two-constant",(d ->)

2DARRAY

A defining word used in the form:

d 2CONSTANT <name>
to create a dictionary entry for <name>, consisting of the
4-byte number d,
When <name> is later executed the value d is put on the
stack,

5. 2CONSTANT FIVE

AR,NO,,49/68,CH,"two-double-array",(nl n2 ->)
A defining word used in the form:

nl n2 2DARRAY <name>
to create a dietionary entry for <name>, consisting of the 1
byte high-row-index nl (maximum 254) +1, and n2+1 columns
(indexes 0 to n2) of nl+l rows (indexes 0 to nl) of
four-byte elements,
When <name> is later used it is in the form:

n3 n4 <name>
where the address of Element n3,n4 is put on the stack,
Define a two-dimensional array named Al, 8 columns by 6
rows.,

5 7 2DARRAY Al
Set Element 1,5 equal to 7:

7.1 5 A1 D!

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);

Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-14 / MMSFORTH USERS MANUAL

2DROP DP,EX,,0,UN,"two~drop",(d ->)
Drops top double number from stack,

ZDUP DP,EX,,Q,UN,"tWO—dupe",(d "> d d)
Duplicates the top double number on the stack,

2EDIT TO,NO,,61/80,NE,"two-edit",(n ->)
Diagnostic tool to determine equivalence of two blocks at
same relative location on two disks. Reads Block n on Drives
0 and 1 into Block Buffers 0 and 1, Use Alternate-E
(Shift-Clear-E on TRS-80) to Exchange the two blocks on
sereen, Any differing code will flicker.

2EDITS TO,NO,,61/80,NE,"two-edits",(nl n2 ->)
Does 2EDIT on consecutive blocks from Bloek nl for a count
of n2 blocks., Edit and Alternate-S or Alternate~-Q
(Shift-Clear-S or Shift-Clear-Q on TRS-80) to proceed to
next pair of blocks,

20VER DP,EX,,34/40,UN,"two-over",(d1 d2 -> d1 d2 d1)
Copies the second double number onto the stack,

2ROT DpP,EX,,44/63,UN,"two-rote",(d1 d2 d3 -> 42 d3 d1)
Rotates the third double number to the top of the stack,

2SWAP DP,EX,,34/40,UN,"two-swap",(d1 d2 -> 42 d1)
Exchanges the top two double numbers on the stack.

2VARIABLE DP,EX,,43/63,CH,"two-variable”
A defining word used in the form:
2VARIABLE <name>
to create a dictionary entry for <name>, consisting of four
bytes.
When <name> is later used the PFA of <name)> is put on the
stack,
2VARIABLE FIVE 5, FIVE D!

64% FC,NO,,0,UN,"sixty-four-times",(n -> n*64)
Multiplies n by sixty-four.

Vocabulery or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOQOLKIT,
CLOCK; 79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

MMSFORTH Glossary / A9-15

79-STANDARD FO,ST,,36/54,NE,"seventy~nine-standard"

8+

1)

A null word which allows the system to be checked to see if
FORTH 79-STANDARD is supported.

FO’NO’,O,UN’"eight-timeS",(n —> n*8)
Multiplies n by eight.

F0,ST,,0,UN,"colon",(: <name> ... ;)

Defining word used to create a dictionary entry for <name>
in CURRENT vocabulary, which is called a colon-definition.
CONTEXT is set to equal CURRENT and STATE changed to
compilation, The compilation addresses of subsequent words
from the input stream which are not immediate words are
stored into the dictionary to be executed when <name> is
later executed, IMMEDIATE words are executed as
encountered., If a word is not found after a search of the
CONTEXT and CURRENT vocabularies, conversion and
compilation as a literal number is attempted, with regard to
the current BASE. Failing that, an error condition exists,

FO,NO,,32/47,NE,"colon-zero",(n1 -> n2)
Converts relative block number nl to absolute block number

n2 for Drive 0,

FO,NO,,32/47,NE,"colon-one",(nl -> n2)
Converts relative block number nl to absolute block number
n2 for Drive 1.

FO,NO,,32/47,NE,"colon-two",(nl -> n2)
Converts relative block number nl to absolute bloeck number
n2 for Drive 2,

FO,NO,,32/47,NE,""colon-three",(nl -> n2)
Converts relative block number nl to absolute block number

n2 for Drive 3.

FO,NO,,32/47,NE,"ecolon-r",(n1l n2 -> nl n3)
Converts a range of numbers, nl through n2, to starting nil,
and count n3.

FO,ST,IM&CO,0,CH,"semi~colon”
Terminates a colon-definition and sets STATE to Execute,

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source cocde not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-16 / MMSFORTH USERS MANUAL

sCODE AS,EX,IM&CO,20/37,UN,"semi-colon-code"
(: <name> ... ;CODE ...)

Ends the creation portion of a new defining word and begins
the execution portion) of it after setting the CONTEXT
vocabulary to ASSEMBLER and STATE to Execute,

When <name> is executed in the form: <name> <namex> to
define <namex>, the compilation address of <namex> will
contain the address of the code sequence following the
;CODE in <name>, Execution of any <namex> will cause this
machine code sequence which follows ;CODE to be executed,

< FO,sT,,0,NU,"less-than",{ nl n2 -> flag)
True if nl is less than n2.

<# FO,sT,,0,UN,"less~number-sign”
Initializes for "pictured" numeric output. (See #)

<= FO,NO,,0,UN,"less-than-or-equal”,(nl n2 -> flag)
True if nl is less than or equal to n2.

< FO,NO,,0,UN, " not-equal",(nl1 n2 -> flag)
True if nl is not equal to n2.

<CMOVE FO,NO,,21/38,NE,"reverse-c~-move",(addrl addr2 n ->)
Copies n bytes beginning at addrl to addr2. Addrl and addr2

are called as in CMOVE, but the move proceeds within the n
bytes from high memory toward low memory.

= F0,SsT,,0,UN,"equals",(n1 n2 -> flag)
True if nl equals n2.

> FO,ST,,O,UN,"greatGP—thann,(nl nz -> ﬂag)
True if nl is greater than n2.

>= F0,ST,,0,UN,"greater-than-or-equal”,(nl n2 -> flag)
True if nl is greater than or equal to n2.

Vocabulary or Extension: FORTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTE, GRAPHICS, RANDOM, ARRAYS, TQOLKIT,
CLOCK; 79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

>B:D

>BINARY

>IN

>R

"y

?CLR

DUP

?KEY

MMSFORTH Glossary / A9-17

FO,NO,,47,NE,"to-b-colon-d",(block# -> rel-block# drive#)
(IBM PC)

Given a block number, returns a relative bloeck number on
drive number,

FO,NO,,0,NE,"to-binary",(d1 addrl -> d2 addr2)
Converts to a value the text string beginning at addri+l
with regard to BASE. The new value is accumulated into dl
producing d2. addr2 is the address of the first
non-convertible character, (Same as CONVERT .)

FO,ST,UV,O,NE,"tO—iH", ("> addl‘)
User variable containing the present character offset within
the input stream, (0 to 1023).

FO,ST,CO,0,UN,"to-r",(n =>)

Transfer n to the return stack. Every >R must be balanced
by a R> in the same control structure nesting level of a
colon-definition.

FoO,ST,,32/47,UN,"question-mark",(addr ->)
Displays the number at address, using the format of . (dot).
Equivalent to @ ., .

FO,NO,,0,NE,"question-color™,(->) (IBM PC)

If current video display is color board then wait for vertical
retrace and turn video off., If b/w board do nothing., Removes
hash from updating color sereen,

FO,ST,,0,CH,"question-dup",(n -=> n) or (n => n n)
Duplicates n if it is non-zero, otherwise does nothing,

FO,NO,,O’UN’“queStion"key"’(“> Ch&l’)
Checks to see if a key is being pressed, Returns 0 if no key
pressed, else ASCII value of key .

FO,NOQ,,32/47,UN,"question-s"
Outputs value of stack pointer.

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER YARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-18 / MMSFORTH USERS MANUAL

TL

ABORT

ABS

ACASE

ALLOT

AND

Vocabulary
STRINGS,
CLOCK;

FO,NO,,35/53,NE,"question-t-1",(n1 n2 ->)
QOutputs Line nl of Screen n2 if it is all printable characters,

FO,ST,,O,UN,"fetCh",(addI‘ "> n)
Leaves on the stack the number contained at addr.

Fo,sT,,0,NE
Clears the user and return stacks, setting execution mode.
Returns control to the terminal.

FO,ST,’O’UN,(Dl "> H2)
Leaves absolute value n2 of nl.

FO,NO,IM&CO0,25/21,UN,(char ->)
Begins alphabetic case structure of the form:

ACASE cce" <name> <name> <name> OTHERWISE ...
CASEND
At compilation it is followed by cne blank and a list of
ASCII characters each of which matehes an appropriate
routine in the dictionary. The 1list of characters is
terminated with a " followed by the matching list of
routines, When executed compares char with each defined
character and executes appropriate <name>.

ACASE ZAP" ZRTN ARTN PRTN OTHERWISE ." BAD"
CR CASEND
If top item on stack = 65 (ASCII "A") then ACODE is
executed.
If top item on stack is not equal to any of the defined
characters, control passes to the word following OTHERWISE
(if present) or CASEND .

FO’ST,’IS/O,UN,(n "'>)
Adds n bytes to the parameter field of the most recently
defined word.

FO,ST,,O,UN,(nl n2 ‘> n3)
Performs bitwise logical AND operation on nl and n2,

or Extension: FORTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

MMSFORTH Glossary / A9-19

ARRAY AR,NO,,49/68,UN,(n ->)
A defining word used in the form:
n ARRAY <name>
to create a dictionary entry for <name>, consisting of n+l
two-byte elements (indexes 0 to n).
When <name> is later used, it is in the form:
n <name>
which the address of Element n is put on the stack.
Define an array named B with 16 elements,

15 ARRAY B
Set Element 5 equal to Element 7:
7TB@ 5B!
ASC ST,NO,,52/71,UN,"ass-key",($ -> char)

Returns ASCII value of first character in the string.

ASSEMBLER FO,NO,IM,18/23,UN
Name of the 8080 or 8088 Assembler vocabulary. When this
name is executed, ASSEMBLER 1is established as the

CONTEXT vocabulary,

. B/W FO,NO,,50,NE,"b-slash-w™,(->) (IBM PC)
Sets current video board to black-and-white (i.e.,
monochrome) and initializes black-and-white board.
(B/W&COLOR option.)

B:D> FO,NO,,47,NE,"b-colon-d",(rel-block# drive# -> block#)
(IBM PC)
Given a relative block number and drive number, returns an
absolute block number.

BASE FO,ST,UV,0,UN,(-> addr)
User variable containing the radix for current input-output
number conversions on input or output. Allowable range is 2
to 70.
: BINARY 2 BASE! ;

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER YARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
. Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-20 / MMSFORTH USERS MANUAL

BEGIN F0,ST,IM&CO0,16/21,CH

Used only in colon-definitions. Marks the beginning of an
indefinite loop in the forms:

BEGIN ... flag UNTIL or

BEGIN ... flag WHILE ... REPEAT
A BEGIN ... UNTIL loop will be repeated until flag is true.
A BEGIN ... WHILE ... REPEAT loop will be repeated until
flag is false, The words after UNTIL or REPEAT will be
executed when either loop is finished, flag is always
dropped after being tested.

BL FOo,NO,,0,CH,"b-1",(-> char)
Leaves ASCII blank value (32 decimal) on stack,

BLANK FO,NO,,26/40,UN,(addr n ->)
Fill an area of memory starting at addr for n bytes, with
ASCII blanks (decimal 32).

BLIST FO,NO,,35/53,NE,"b-list",(n ->)
Qutputs Screen n, formatted with block number at the top
and line numbers on the left.

BLK FO,ST,UV,0,NE,"b-1-k",(-> addr)
User variable containing the number of the mass storage
. bloek being interpreted as the input stream., If the content
is zero, the input stream is taken from the terminal.

BLOCK F0,ST,,0,UN,(n -> addr)
Leaves the address of the first byte of Block n. If the
bloeck is not already in memory, it is transferred from mass
storage into whichever memory buffer has been least recently
accessed, If the block occupying that buffer has been
UPDATEd (i.e. modified), it is rewritten onto mass storage
before Block n is read into the buffer.

BOOT FO,NO,,15/20,NE
Causes the system to reload from disk, This is the software
equivalent of pressing the Reset button.

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTES, GRAPHICS, RANDOM, ARRAYS, IQOLKIT,
CLOCK; 79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

BOX

BUFFDATA

BUFFER

C?

ca

MMSFORTH Glossary / A9-21

Fo,NO,,52,NE,(modulus height width row col ->) (IBM PC)
Draws a box whose upper left corner encloses row col. The
box is of given height and width and its horizontal lines are
marked every modulus characters,

FO’NO’UV’O’NE,(n "> &dd[‘)
Array containing information about the buffers.
See Appendix Al2.

F0,ST,,0,NE,(n => addr)

Obtains the next block buffer, assigning it to Block n. The
bloeck is not read from mass storage. If the buffer has been
previously marked as UPDATEd, it is written to mass
storage. The address left is the first byte within the buffer
for data storage.

WARNING (V.2.0 only): Results cannot be predicted if Block
n is already in a buffer.

F0,ST,,0,UN,"c-store",(n addr ->)
Stores the least significant 8 bits of n at addr,

FO,NO,,0,UN,"c-comma™,(n =>)
Stores the low-order 8 bits of n at the next byte in the
dictionary, advancing the dictionary pointer by one.

FO,NO,,38,NE,"cursor-equals™, (IBM PC)

(b/w cursor-top btm ecolor cursor-top btm ->)
Defining word for cursors. eg:

12 13 6 7 C= UNLN-CUR
defines a word " UNLN-CUR " which when used will set a 2
line high cursor for both the b/w or color card, whichever is
active, This cursor will be at the bottom of the character.

FO,NO,,32/47,UN,"¢c~-question",(addr ->)
Qutputs low-order 8 bits at address.

F0,s8T,,0,UN,"c-fetch",(addr -> byte)
Leaves on the stack the contents of the low-order character
(8 bits) at addr. The high-order bits are zeroed,

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-22 / MMSFORTH USERS MANUAL

CARRAY AR,NO,,49/68,UN,"c-array",(n ->)
A defining word used in the forms:
n CARRAY <name>
to create a dictionary entry for <name>, consisting of n+l
one-byte elements (indexes 0 to n).
When <name> is later used it is in the form:
n <name>
where the address of Element n is put on the stack.
Define an array named B with 16 elements,
15 CARRAY B
Set Element 5 equal to Element T:
7B C@ 5B C!

CASEND FO,NO,IM&CO,25/21,UN,"case-end"
Ends ACASE or NCASE conditional structure,

CATALOG FO,NO0,,36/54,CH
Outputs length, first 3 characters, and hash code of defined
words in CONTEXT dictionary. (Four-letter words shown in
full,) Immediate words have I printed after size., The last
"word" listed may be garbage.

CCONSTANTFO,NO,,0,UN,"c~-constant",(byte ->)

A defining word used in the form:
byte CCONSTANT <name>

to create a dietionary entry for <name>, consisting of the
byte in its parameter field.
When <name> is later used, the byte will be left in the
low-order 8 bits of the stack entry with the high~order 8
bits zeroed,

CHRS$ sT,NO,,52/71,UN,"c-h-r-string",(char -> addr)
Takes an ASCII value from top-of-stack, puts its equ1valent
string into PAD and puts PAD's present address on the stack,

CMOVE F0,ST,,0,CH,"c-move",(addrl addr2 n ->)
Move n (at least 1) bytes beginning at address addrl to
addr2, The contents of addrl are moved first, proceeding
toward high memory. (See <CMOVE).

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTES, GRAPHICS, RANDOM, ARRAYS, TQOLKIT,
CLOCK; 79~-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

MMSFORTH Glossary / A9-23

CODE FO,EX,,20/37,UN
A defining word which begins a dictionary entry for the word
following, and makes ASSEMBLER the CONTEXT vocabulary.
Used in the form:
CODE <name> ... NEXT (or PSH or PSH2)

COLOR FO,NO,,50,NE,(->) (IBM PC - coloer video only)
Sets current video board to color and initializes color board.

(B/W&COLOR option,)

COLOR? FO,NO,,22,NE,"color~question",(-> f) (IBM PC)
Returns true if current video window is on color board,

COMPILE F0,8T,CO,0,NE
When a word containing COMPILE executes, the 16-bit value
following the compilation address of COMPILE is copied
(compiled) into the dictionary. ILe.,
COMPILE DUP will copy the compilation
address of DUP, and
COMPILE [0,] will copy zero.

‘ CONSTANT FO,ST,,0,UN,(n =>)
A defining word used in the form:
n CONSTANT <name>
to create a dictionary entry for <name>, consisting of n in
its parameter field,
When <name> is later executed, the N will be left on the
stack,
5 CONSTANT FIVE

CONTEXT FO,ST,UV,0,UN,(-> addr)
A user variable specifying the first voecabulary in which
dictionary searches are to be made during interpretation of
the input stream.

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER YARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
‘ Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-24 / MMSFORTH USERS MANUAL

CONVERT

COPY

COUNT

CR

F0,ST,,36/54,NE,(d1 addrl -> d2 addr2)

Converts to a value the text string beginning at addl+l with
regard to BASE. The new value is accumulated into dil
producing d2, addr2 is the address of the first
non-convertible character, (Same as >BINARY .)

FO,NO,,35/53,CH,(nl n2 =>)

Copies Block nl to Block n2 by reading Bloeck nl into
memory, changing its block number in memory, and marking it
as UPDATEd.

WARNING: Results cannot be predicted if n2 is already in a
buffer, Use FLUSH or EMPTY-BUFFERS before COPY to clear
the buffers.,

F0O,ST,,0,UN,(addr -> addr+l n)
Leaves the address and the character count of the text
string beginning at addr. The first byte of the text string at
addr must contain the character count n. Range of n is 0 to
255,
It could be defined as:

: COUNT DUP 1+ SWAP C@Q ;

FO,ST,’O,UN’"C“I‘“
Outputs a carriage return. (Most standard output devices also
do an automatic line feed,)

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,

STRINGS,
CLOCK;

CASSETTE, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

CREATE

CRESET

CRT

MMSFORTH Glossary / A9-25

F¥o,sT,,0,CH
Creates a dictionary entry for <name> without allocating any
parameter field memory., When <name> is subsequently
executed, the addess of the first byte of <name>'s
parameter field is left on the stack,
CREATE can be used by itself to, for example, create an
initialized array-like variable:

CREATE ARR 6,7, 8,
creates a dictionary entry called ARR with 6, 7, and 8 in
the parameter field, When ARR is called, the address of the
first byte of its parameter field is put on the stack.
CREATE can also be used inside a colon-definition, In this
case its execution is delayed until the actual execution of
the word defined with the colon-definition,
For example:

¢ VARIABLE CREATE 0, ;
uses CREATE to give a name to the variable and then
allocates two bytes which are initialized to zero. When
creating a variable, CREATE finds <name> after VARIABLE
and uses it to set up the dictionary entry, then the rest of
the definition is executed to initialize the parameter field
with zero,
Later, when <name> is called, its address is placed on the
stack, Often used with DOES>.
This third level effect is quite abstract, like "thinking about
thinking about thinking".

FO,NO,,0,NE,"color reset",(->) (IBM PC)
Turns coler video back on., Used after ?CLR,

FO,NO,,32/40,UN,"C"’I"’tn’("'>)
Makes the video display (Cathode Ray Tube) the current
output device.

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER YARIABLE;

Block# (TRS-80/IBM, or 0 if source code not given);

Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-26 / MMSFORTH USERS MANUAL

CUR-POS

CURRENT

F0,NO,,0,NE,"cursor-position",(-> addr) (IBM PC)
returns starting address for Cursor Position Table:

+0 eolumn number

+1 row number

+2 top left column of current window

+3 top left row of current window

+4 bottom right column of current window
+5 bottom right row of current window
+6 current attribute for current window
+7 ?seroll - 1 = seroll, 0 = no scroll

+8 video page number of current window

+9 temporary byte location
+10 save address of current window
+12 video board base address of current window

FO,ST’UV’O,UN,("> addI')
Leaves the address of a variable specifying the vocabulary
into which new word definitions are to be entered. The

" CURRENT vocabulary is searched when the search of the

CURSOR

CVARIABLE

Vocabulary
STRINGS,
CLOCK;

CONTEXT vocabulary ends.

FO,NO,UV,0,UN,(-> addr) (TRS-80)

Leaves the address of a user variable where the cursor
character is stored, As delivered, it contains 176 decimal.
See Appendix A12,

It can easily be changed. Try DECIMAL 36 CURSOR !

(Model III users try 23 EMIT 196 CURSCR !)

FO,NO,,17/22,UN,"c-variable"
A defining word used in the form:

CVARIABLE <name>
to create a dictionary entry for <name> and allot one byte
for storage in the parameter field, (MMSFORTH initializes it
to zero.) The application must initialize the stored value for
79-STANDARD. When <name> is later executed, the
parameter field address is placed on the stack,

or Extension: FORTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, TQOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

CYBLK

DEIN

D*/

D*/MOD

D/

D/MOD

MMSFORTH Glossary / A9-27

CA,NO,,58/77,UN,"c-v~block",{ addr n ->)

Verifies Block n on tape by reading it in and comparing it to
the data at addr., The data to be compared must already be
at addr. Most often used after a write,

Returns _Error ok or _ok,

DP,NO,,44/63,UN,"d-number-in",(-> d)
Inputs a double-precision signed integer number (contains a
decimal point) and puts it on the stack. Sets HI# and #PT.

Included blank characters or other bad input returns _2 Redo
?

DP,NO,,48/67,NE,"d-times",(d1 42 -> 43)
Leaves the double number product of dl times d2,

DP,NO,,48/67,NE,"d-times~-divide",(d1 d2 d3 -> d4)
Multiplies dl1 by d2, then divides by d3, n4 is rounded toward
zero, The product of dl times d2 is maintained as a 64-bit
value for greater precision,

DP,NO,,48/67,NE,"d-times~divide-mod",(d1 d2 d3 -> d4 d5)
Multiply d1 by d2, divide the 64-bit result by d3 and leave
the remainder d4 and the quotient d5. The remainder has the
same sign as di,

DP,NO,,45/64,UN,"d-times-s",(ud un -> ut)
Multiplies unsigned double-precision by single-precision giving
triple-precision result,

FO,ST,,D,CH,"d"p].US",(dl dz "> d3)
Leaves the arithmetic sum of dl plus d2.

FO,EX,,34/40,CH,"d-minus",(d1 d2 -> d3)
Leaves the difference of d1 minus d2.

DP,NO,,47/66,CH,"d-divide",(d1 d2 -> d3)
Divides dl1 by d2 leaving quotient d3, d3 is rounded toward
zero,

DpP,NO,,47/66,NE,"d-divide-mod",(d1 d2 -> d3 d4)
Divides dl1 by d2 leaving remainder d3 and quotient d4, d3
has the same sign as di,

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-28 / MMSFORTH USERS MANUAL

D. DP,EX,,44/63,CH,"d-dot",(d ->)
Outputs d as an integer, converted according to BASE
followed by one blank., Only a negative sign is displayed.

D.R DP,EX,,44/63,CH,"d-dot-r",(d n =>)
Qutputs d as an integer, converted according to BASE, right
aligned in an n character field, Display the sign only if
negative,

DO= FO,EX,,0,CH,"d-zero~equals", (d -> flag)
True if d is zero.

D< DP,EX,,43/62,CH,"d-less-than",(d1 d2 -> flag)
True if dl is less than d2.

D= DP,EX,,44/63,CH,"d-equal",(d1l d2 -> flag)
True if dl equals d2.

D? GR,NO,,54,UN,"d-question",(n1 n2 -> flag) (TRS-80)
~ In a double-width graphies grid consisting of 48 rows and 64
columns of "square" graphic points, returns true if the point
at Row nl, Column n2 is set.
5 50 D?
checks the condition of the 51st point in Row 6 (where the
upper left sereen point is 0,0).

D?# FO,NO,,0,NE,"d-question-number”,(n -> nl n2 n3 n4)
Given a block number returns the drive nl, track n2, start
seetor n3, and the number of sectors n4 for that block,

DABS DP,EX,,43/62,CH,"d-abs",(d1 -> d2)
Leave the positive double number d2 as the absolute value of
d1l, Valid range is 0 to 2,147,483,647,

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
CLOCK; 79~-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

DARRAY

DATE

DDEN

DECIMAL

MMSFORTH Glossary / A9-29

AR,NO,,49/68,UN,"d-array",(n ->)
A defining word used in the form:
n DARRAY <name>
to create a dictionary entry for <name>, consisting of n+l
four-byte elements (indexes 0 to n),
When <name> is later used it is in the form:
n <{name>
where the address of Element n is put on the stack,
Define an array named B with 16 elements,
15 DARRAY B
To set Element 5 equal to Element 7:
7B 2@ 5B 2!

CL,NO,,60/79,NE ,
Outputs system date in the format MM/DD/YY. (See
SET-DATE.)

GR,NO,,54,UN,"d-clear",(N1 N2 ->) (TRS-80)

In a double-width graphics grid consisting of 48 rows of 64
"square" graphic points, clears the point at Row nl, Column
n2,

FO,NO,,23,NE,"d-den",(n ->) (TRS-80 M.3 Disk only)
Sets Drive n to double-density. See SDEN .

FO,ST,,16/21,UN
Sets input-output number conversion BASE to 10,

DEFINITIONS FO,ST,,17/22,UN

DEPTH

Sets CURRENT to the CONTEXT vocabulary so that
subsequent definitions will be created in the vocabulary
previously selected as CONTEXT,

FO,ST,,32/47’NE’("> 1’1)
Leaves the number of 16-bit values contained in the user
stack before n was added,

Attribute(s): IMMEDIATE, CQLON-DEFINITION, and/or USER VYARIABLE;
Block# (TRS-80/1BM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-30 / MMSFORTH USERS MANUAL

DIR

DIRBLK

DISK

DISKDATA

DISK-TAPE

DISP-B#

DMAX

DMIN

DNEGATE

Vocabulary
STRINGS,
CLOCK;

FO,NO,,25/38,CH,"d-i-r"
Loads the block pointed to by DIRBLK in order to display
the pseudo-directory.

FO,NO,,15/20,NE,"dir-block",(-> n)
Leaves block number n of DIRectory block,

CA,NO,,58/77,UN (Disk system only)

Directs mass storage read/write operations (RBLK, WBLK,
ete,) to disk drive(s).

See TAPE .

FO,NO,UV,0,NE,(n -> addr) (Disk System only)
Array containing information about the physical character-
isties of the disk drives., See Appendix A12,

0 DISKDATA 74 DUMP

CA,NO,,58/77,UN,(nl n2 ->) (Disk System only)

Transfers consecutive disk blocks to tepe starting at Block
nl for a count of n2,

(Prepare recorder in advance, by positioning and pressing
Play and Record.) ‘

FO,NO,,52,NE, "display-b-number",(block# ->) (IBM PC)
Displays block number in decimal in absolute and drive
number, relative block number formats.

DP,EX,,43/63,NE,"d-max",(dl d2 -> d3)
Leaves the larger of two signed double numbers.

DP,EX,,43/63,CH,"d-min",(d1 d2 -> &3)
Leaves the smaller of two signed double numbers,

FO,EX,,0,CH,"d-negate",(d => -d)
Leaves the double number two's complement of a double
number; i.e., the difference, 0 less d.

or Extension: FORTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTE, GRAPHICS, RANDOM, ARRAYS, TQOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

DRDSECS

DROP

MMSFORTH Glossary / A9-31

FO,ST,IM&CO,22/39,UN,(n1 n2 ->)
Use in a colon-definition in the format:

DO .. LOOP or

DO ... +LOOP
Begins a finite loop which will terminate based on control
paramenters, The loop index begins at n2, and terminates
based on the limit nl. At LOOP the index is incremented by
+1; at +LOOP by the positive or negative value currently on
the stack. The range of a DO ... LOOP is determined by the
terminating word. DO ... LOOPs always execute at least once
and may be nested. In MMSFORTH, the indexes are moved to
the return stack during execution,

FO,ST,IM&CO,0,UN,"does"
Defines the run-time action of a word created by a
high-level defining word,
Used in the form:

: <name> ... CREATE ... DOES> .. ;
and then <name> <namex>
Marks the termination of the creation part of the defining
word <name> and begins the definition of the run time action
for words that will later be defined by <name>, On execution
of <namex> the sequence of words between DOES> and ; will
be executed, with the address of <namex>'s parameter field
on the stack, »

FO,NO,UV,O,CH,"d"p"’("> addl‘)
Dictionary Pointer leaves the address of the user variable
containing the address of the top of the dictionary.

FO,NO,,0,UN,"d-read-secs", (Disk System only)

(addr nl n2 n3 n4 -> flag)
Reads any number of consecutive disk sectors into memory
location at addr from Drive nl, Track n2, and Sector n3 for
sector-count n4 leaving zero if no error was detected.
Maximum numbers are: drives=8, tracks=255, sectors=255,
number of seectors=255,
ALL SECTORS READ MUST BE ON THE SAME DRIVE.

FO,ST,,D,UN,(n "">)
Drops the top number from the stack.

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-32 / MMSFORTH USERS MANUAL

DSET GR,NO,,54,UN,"d-set",(nl n2 ->) (TRS-80)
In a double-width graphies grid consisting of 48 rows of 64
"square™ graphie points, sets a double~width graphies element
at Row nl, Column n2,

DU#* DP,NO,,48/67,UN,"d-u-times", (udl ud2 -> uq)
Multiplies unsigned double-precision numbers udl and wud2
giving quadruple number (64-bit) unsigned result,

DU/MOD DP,NO,,47/66,NE,"d-u~-divide-mod",(uq udl -> ud2 ud3)
Performs unsigned division of quadruple number (64-bit) ug by
udl, leaving the remainder ud2 and quotient ud3. ALl values
are unsigned,

DUK DP,EX,,44/63,NE,"d~u-less-than",(udl ud2 -> flag)
True if udl is less than ud2. Both numbers are unsigned.
DUMP FO,NO,,35/53,UN,(addr n ->)
Qutputs the values contained in memory starting at addr for
n bytes,

HEX 8000 20 DUMP
dumps 32 bytes starting at address 8000 Hex. (On IBM PC,
see also LDUMP.)

DUP FoO,ST,,0,UN,"dupe”,(n => n n)
Leaves a duplicate copy of the top stack number,

Dup-name: Special system comment, indicating compilation of a name
with a similar one already in the Dictionary., Comment may be
suppressed with: 0 21 MMS 25 + C! .

DWTSECS FO,NO,,0,UN,"d-write-sees" (Disk System only)
(addr nl1 n2 n3 n4 -> flag)

Writes any number of consecutive disk sectors from memory
location at addr from Drive nl, Track n2, and Sector n3 for
sector-count n4 leaving zero if no error was detected.
Maximum numbers are: drives=8, tracks=255, sectors=255,
number of sectors=255,
ALL SECTORS WRITTEN MUST BE ON THE SAME DRIVE.
WARNING: This word ignores PBLK, the software block
protect feature!

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTES, GRAPHICS, PEANDOM, ARRAYS, TOOLKIT,
CLOCK; 79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

EBLK

ECLR

EDITOR

EEDIT

ELSE

Attribute(s):

MMSFORTH Glossary / A9-33

FO,NO,,39/58,CH
EDITs the sereen specified in SCR.

GR,NO,,54/73,UN,"e-question",(n1 n2 -> flag)
In a graphics grid (48 rows by 128 columns on TRS-80, 50
rows by 80 columns on IBM PC), returns true if the point at
Row nl, Column n2 is set,

5 50 E?
checks the condition of the 51st point in Row 6 (where top
is the upper left sereen point is 0,0).

FO,NO,UV,O,NE,"e‘b].OCk",("'> addl‘)
Leaves address of user variable which holds the (16-bit)
bloek number in error message. (See EPCS.)

GR,NO,,54/73,UN,"e~clear",(nl n2 ->)

In a graphics grid (48 rows by 128 colums on TRS-80, 50
rows by 80 columns on IBM PC), clears a graphies element
at Row nl, Column n2. (The upper left screen point is 0,0.)

FO,NO,,39/58,CH,(n ->)
Sets SCR to n and displays Screen n in EDITOR mode,

FO,NO,IM,37/55,UN

The name of the Editor vocabulary, When this name is
executed, FEDITOR is established as the CONTEXT
vocabulary,

FO,NO,,39/58,NE,"e~edit"
EDITs block specified in error message (EBLK), positioning
cursor at 1st character of the error word (EPOS).

FO,ST,IM&CO,16/21,UN
Used in a colon~definition in the form:

IF .. ELSE ... THEN
ELSE executes after the true part following IF. ELSE forces
execution to skip to just after THEN. It has no effect on
the stack,
The words that follow ELSE are executed if top-of-stack was
zero (false) when IF was invoked.

IMMEDIATE, CQLON-DEFINITION, and/or USER VARIABLE;

Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-34 / MMSFORTH USERS MANUAL

EMIT

FO,ST,,0,CH,(char ->)

Qutputs char, Can be used to print special characters,
36 EMIT

will print a "$" (36 decimal is the ASCII code for $).

EMPTY-BUFFERS FO,ST,,32/47,CH

ENCODE

EPOS

ERASE

ESET

EXECUTE

EXIT

Vocabulary
STRINGS,
CLOCK;

Mark all buffers as empty. UPDATEd blocks are not written
to mass storage. The actual contents of the buffers are not

changed.

FO,NO,,0,NE,,(addr -> d) (IBM PC)
Encodes string at addr into 32-bit hashed representation.

FO,NO,,21/38,UN,
Outputs _(Enter) and pauses until the Enter key is pressed.

FO,NO,UV,0,NE,"e-position",(-> addr)

Leaves address of user variable holding error position offset
(number of 16-bit characters) from upper left in bloek of
error message. (See EBLK.)

FO,NO,,26/40,UN,(addr n ->)
Stores binary zeroes in memory for n bytes starting at addr,

GR,NO,,54/73,UN,"e-set",(nl n2 ->)

In a graphics grid (48 rows by 128 colums on TRS-8C, 50
rows by 80 columns on IBM PC), sets a graphics element at
Row nl, Column n2. (The upper left screen point is 0,0,)

FO,ST,,O,UN,(addl‘ ">)
Executes the dictionary entry whose compilation address is on
the stack,

Fo,SsT,,0,NE

When compiled within a colon-definition, terminates execution
of that definition at that point. (May not be used within a
DO .. LOOP.) When executed from a load screen, terminates
interpretation of the sereen at that point,

or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, TQOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

EXPECT

FILL

FIND

FLUSH

FORGET

FORTH

MMSFORTH Glossary / A9-35

F0,ST,,0,UN,(addr n ->)

Inputs characters to memory beginning at addr, upward, until
carriage-return or the count of n has been received., Two
nulls are added at the end of text., MMSFORTH's Input Line
Editor redefines the word (see Appendix Al2 and Option
Select Block, typ. Bloek 15/20).

FO,ST,,26/40,CH,(addr n char ->)
Fills a range of memory with n copies of char .
15360 1024 191 FILL QUIT
fills TRS-80 video memory with all-white graphics characters.

FO,S8T,,0,NE,(-> addr)
Use in the form:

FIND <name>
Leaves the compilation address of the next word <name> to
be accepted from the input stream, If that word cannot be
found in the dictionary after a search of CONTEXT and
CURRENT, leaves zero,

FO,NO,,32/47,UN
Forces all updated blocks to be written to disk. A synonym
for SAVE-BUFFERS.

FO,sT,,17/22,UN
Execute in the form:

FORGET <name>
Deletes from the dictionary all words added to the dietionary
after <name> ineluding the word <name>, regardless of their
vocabulary, Cannot be used within a eolon-definition,

FO,ST,IM,0,UN :

The name of the primary voecabulary. Execution makes FCRTH
the CONTEXT vocabulary, New definitions become a part of
FORTH until a differing CURRENT vocabulary is established,
User vocabularies conclude by 'chaining' to FORTH, so it
should be considered that FORTH is 'contained' within each
user's vocabulary,

It is IMMEDIATE, so it may be invoked inside a definition,

Attribute(s): IMMEDIATE, CQOLON-DEFINITION, and/or USER VARIABLE;
Bloek# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-36 / MMSFORTH USERS MANUAL

FULL-CUR FO,NO,,38,NE,"full-cursor",(->) (IBM PC)
Sets full height cursor.

GET-CHR FO,NO,,0,NE,"get-character”,(-> byte) (IBM PC)
Returns the character at the cursor on the video secreen,

GET-CHRS FO,NO,,40,NE,(adr count ->) (IBM PC)
Like MOVE-CHRS-FROM-SCRN, but turns off video for color
board and returns cursor to position before command was
executed,

GET-DATE CL,NO,,60/79,NE,(=> n1 n2 n3)
Returns nl Month, n2 Day, n3 Year

GTC FO,NO,,22,NE,"get-cursor",(=-> row column) (IBM PC)
Returns row and column position of cursor,

H/L CA,NO,,56,NE, "h~slash~1" (TRS-80 M.3 only)
Calls ROM routine to set cassette speed, Then respond with

H for high-speed, or L for low-speed.

HERE FO,ST’,O,UN,("'> addr)
Leaves the address of the next available byte at the top of
the dictionary.

HEX FO,NO,,16/21,UN, "hex"
Sets I/0 number conversion BASE to 16 (hexadecimal).

HI# FO,NO,UV,0,UN,"high-number",(-> addr)
Leaves address of user variable which holds the high word
(16 bits) of the last number input. All numbers are input to
32-bit precision, but if the number input did not have a
decimal point only the low word (16 bits) is pushed onto the
stack, The value of the high word (16 bits) is put into HI#.

HOLD FO,ST’,O’UN’(Chal‘ "'>)
Inserts char into a pictured numeric output string. May only
be used between <# and #> .

HSYNC FO,NO,,48,NE,"h-sink",(n ->) (IBM PC)
Horizontal synchronization; moves display on screen right for
positive n and left for negative n.

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTE, GRAPHICS, RANDOM, ARRAYS, IQOLKIT,
CLOCK; 79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

I!

IBM

IMMEDIATE

Attribute(s):

MMSFORTH Glossary / A9-37

FO,ST,,21/39,UN,(-> n)
For T79-STANDARD, copies the loop index onto the data
stack, May only be used in the form:

DO ee I «ee LOOP oOr

DO e I e +LOOP
In MMSFORTH, copies the top of the return stack onto the
user stack; does not alter the return stack, May be used to
get the loop index or in the same way R@ is used,

FO,N0O,C0,21/39,NE,"i-prime",(-> n)

For T79-STANDARD, used only within a colon-definition
executed only from within a DO .. LOOP to return the
corresponding loop index.

For MMSFORTH, returns the second on the return stack, If
used within a loop, it gives the loop limit. If used within a
colon-definition which was called from within a loop, it gives
the loop index, '

FO,NO,,48,NE,(drive# ->) (IBM PC)
Sets drive# to read and write IBM formatted disks. See M.3 .

FO,ST,IM,16/21,UN,(flag ->)
Used in a colon-definition in the form:

flag IF ... ELSE ... THEN or

flag IF ... THEN
If flag is true, the words following IF are executed and
the words following ELSE to THEN are skipped. The ELSE
part is optional,
If flag is false, the words between IF and ELSE, or
between IF and THEN (when no ELSE is used), are skipped.
IF ... ELSE ... THEN conditionals may be nested,

FoO,sT,,16/21,UN

Marks the most recently defined dictionary entry as a word
which will be executed when encountered during compilation
rather than compiled. Compilation of an IMMEDIATE word
may be forced with the word [COMPILE].

IMMEDIATE, COLON-DEFINITION, and/or USER YARIABLE;

Block# (TRS-80/IBM, or 0 if source code not given);
¢ Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-38 / MMSFORTH USERS MANUAL

IN$

INDEX

INKEY$

INSTR

Vocabulary
STRINGS,
CLOCK;

ST,NO,,50/69,UN,"in-string",(-> $)
Inputs a string into PAD, and puts PAD's present address on
the stack. A ? is output to prompt for input.
20 $VARIABLE XX
: REPEATS IN$ XX $! CR 0 DO XX $. SPACE LOOP ;
50 REPEATS Enter ?
(try "MMSFORTH!", "I Love You!", "Aligned", etc.)

FO,NO,,35/53,CH,(n1 n2 ->)
Starting at Screen nl for a count of n2, output Line 0 of
each scereen containing printable text in Line 0.
By convention Line § contains a title,

55 67 :R INDEX :
Lists Screens 55 through 67, :R converts the start and end
screens to start and count.

ST,NO,,52/71,UN,"in-key-string",(-> $)

Simulates INKEY$ function of Level II BASIC. Checks to see
if an input character is available, If so, creates a string of
the character in PAD; if not, creates a length zero string.

FO’NO’,34/49,NE’"in-p"’(n "'> byte)
Inputs a byte from Port n.

ST,NO,,51/70,UN,"in-s-t-r",($1 $2 -> n)
Searches $1 to see if it contains $2., Returns relative
sterting position or 0.

F0,ST,C0,21/39,UN,(-> n)
For 79-STANDARD, copies the index of the next outer loop
onto the user stack, May only be used within a nested DO ...
LOOP in the form:

DC «. DO «. J .. LOCP ... LOCP
In MMSFORTH, copies the third item on the return stack
onto the user stack, Usually used to get the index of the
next outer loop in a nested DO ... LOOP as deseribed for
79-STANDARD above,

or Extension: FORTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOQOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

KEY

L2a@

LKCMOVE

14

LABEL

MMSFORTH Glossary / A9-39

F0,ST,,0,UN,(-> char)
Leaves the ASCII value of the next available character from
the current input device, If the current input device is the
keyboard, blinks the cursor while waiting for a key to be
pressed,

KEY . $.36
(36 is the decimal ASCII code for $).

FO,NO0,35/53,CH
LISTs the screen specified in the user variable SCR.

LA,NO,,83,NE,"l-store",(n daddr ->) (IBM PC)
Long-address version of ! .

LA,NO,,83,NE,"l-two-store",(d daddr ->) (IBM PC)
Long-address version of 2! .

LA,NO,,83,NE,"-two~feteh",(daddr -> &) (IBM PC)
Long-address version of 2@ .

LA,NO,,84,NE,"l-reverse-c-move",(daddrl daddr2 n ->)
(I1IBM PC)
Long-address version of <CMOVE.

LA,NO,,83,NE,"l-feteh",(daddr -> n) (IBM PC)
Long-address version of @ .

FO,NO,,20/37,UN

Creates a header in the form of a variable, and sets
CONTEXT to the ASSEMBLER vocabulary.

This word is normally used to define Assembly language
subroutines completed by RET instead of NEXT. They are not
the same as code procedures, When a word defined using
LABEL is executed it puts its parameter field address on the
stack for the following CALL or JMP instruction,

FO,NO,UV,0,NE,(-> addr)

A variable containing the address of the beginning of the
last dictionary entry made (which might not be a complete or
valid entry).,

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER YARIABLE;
Bloek# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.l.9)

A9-40 / MMSFORTH USERS MANUAL

Lca

LCMOVE

LbuMP

LEAVE

LEFT$

LFILL

LIST

LITERAL

LA,NO,,83,NE,"l-e-store™,(n daddr ->) (IBM PC)
Long-address version of C! .

LA,NO,,83,NE,"l-c-fetch",(daddr -> byte) (IBM PC)
Long-address version of C@ ,

LA,NO,,84,NE,"l-c-move",(daddrl daddr2 n -=>) (IBM PC)
Long-address version of CMOVE .

LA,NO,,85,NE,"l-dump”,(daddr n ->) (IBM PC)
Long-address version of DUMP .

FO,sT,C0,22/39,UN

Sets the limit of a DO ... LOOP equal to the current value
of the index so that a loop will be terminated prematurely,
The index itself remains unchanged, and execution proceeds
normally until LOOP or +LOOP is encountered.

sT,NO,,50/69,UN,"left-string",($1 n -> $2)
Starting from the left, take n characters from $1 to make
$2. $2 is placed in PAD.

ST’I\IO’,52/71,UN,($ "> n)
Returns the character length of $.

LA,NO,,84,NE,"1-fill", (daddr n char ->) (IBM PC)
Long-address equivalent of FILL, using word-count and 8-bit
char,

F0,ST,,35/53,UN,{(n =>)
Lists the ASCII symbolic contents of Sereen n with line
numbers onto current output device, sets SCR to n,

FO,ST’IM,16/21’NE,(n "'>)
If compiling, then compile the stack value n as a 16-bit
literal which, when later executed, will leave n on the stack,

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,

STRINGS,

CLOCK;

CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

LOAD

LOADS

LOOP

LWFILL

M*

m*/

M+

M.3

MMSFORTH Glossary / A9-41

F0,ST,,0,UN,(n ->)

Begins interpretation of source text in Scereen n by making it
the input stream (from >IN and BLK). If interpretation is not
terminated explicitly it will be terminated when the input
stream is exhausted. Control then returns to the input stream
containing LOAD, determined by the input stream locators
>IN and BLK.

FO,NO,,O,UN,(nl I'l2 ">)
Loads multiple blocks starting with Screen nl for n2 bloeks,
all via one block buffer (is overridden by -->).

FO,ST,IM&CO0,22/39,CH

Increment the DO ... LOOP index by one, terminating the
loop if the new index is equal to or greater than the limit,
The limit and index may be in the range -32,768 to 32,767,

LA,NO,,84,NE,"l-w-fill", (daddr nl n2 ->) (IBM PC)
Long-address equivalent of FILL, using nl word-count and n2
word-value (i.e., 16-bit wvalues). See PAINT example on
System Disk.

FO,NO,,33/51,UN,"m-times",(n1 n2 -> d)
Multiplies nl by n2 leaving d.

DP,NO,45/64,UN,"m-times~divide",(d1 nl n2 -> d2)
Multiplies d1 by nl then divides by n2 giving d2. The
intermediate result is maintained as a 48-bit (triple) number,

FO,NO,,O,UN,”m—leS",(dl n "> d2)
Adds n to dl1 giving d2, (mixed precision).

FO,NO,,51,CH,"m-minus",(d1 n => 42) (IBM PC)
Subtracts nl from dl giving d2 (mixed prec.). Was in V1.9,

FO,NO,,48,NE,"m~dot-three",(drive# ->) (IBM PC)
Sets drive# to read and write TRS-80 Model III formatted
disks. See I1BM,

FO,NO,,33/51,UN,"m‘diVide",(d l’ll "> n2)
Divides d by nl giving n2,

Attribute(s): IMMEDIATE, CQLON-DEFINITION, and/or USER YARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-42 / MMSFORTH USERS MANUAL

M/MOD

MARGIN

MAX

MIN

MMS

MOD

MODULUS

MOVE

FO,NO0,33/51,UN,"m~-divide-mod",(d nl -> n2 n3)
Divides d by nl giving remainder n2 and quotient n3.

FC,NO,UV,29&30/44&45,NE,(-> addr)

Leaves address of user variable containing current margin
indent for printer. MARGIN 2+ CQ@ is the current character
position on the line,

F0,S8T,26/0,UN,"max",(nl n2 -> n3)
Leaves the greater of two numbers.

sT,NO,,50/69,UN,"mid-string",($1 nl n2 -> $2)
Returns a substring of length n2 from $1 sterting nl
characters into $1.

FO,ST,,ZG/O,UN,"H}]..H",(nl n2 "> n3)
Leaves the lesser of two numbers,

FC,NO,UV,0,NE
Array which contains addresses of various system routines.
See Appendix Al2.

FO,ST,,33/51,UN,“H]Od",(Hl nz "> n3)
Divides nl by n2, leaving the remainder n3, with the same
sign as nl.

RA,NO,,53/72,UN,(-> n)
Constant containing modulus used in Lehmer multiplication
congruential random number generator.

F0,ST,,36/54,CH,(addrl addr2 n ->)

Moves n 16-bit memory cells from addrl into memory at
addr2, CMOVE is preferred for 8-bit machines, such as the
TRS-80,

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,

STRINGS,
CLOCK;

CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

MMSFORTH Glossary / A9-43

MOVE-CHRS-TO-SCRN FO,NO,,0,NE,,(addr count ->) (IBM PC)

Moves count characters to sereen at current cursor position
from addr.

MOVE-CHRS-FROM-SCRN FO,NO,,0,NE,,(addr count ->) (IBM PC)

MUL

MYSELF

NCASE

NEGATE

NO-CUR

Moves count characters from screen at current cursor
position to addr.

RA,NO,,53/72,UN
Constant containing multiplier used in Lehmer multiplication
congruential random number generator,

FO,NO,IN&CO0,16/20,NE

Causes address of word currently being compiled to be
compiled into itself, Allows recursive programming in
79-STANDARD.

FO,NO,IM&C0,25/20,UN,"n-case",(n ->)
Begins numeric case structure in the form:
NCASE nl n2 n3 " <name> <name> <name>
OTHERWISE ... CASEND
At compilation, it is followed by one blank and a list of
one-byte values each of which matches an appropriate routine
in the dictionary. The list of values is terminated with a "
followed by the matching list of routines., When executed
compares n with each defined character and executes
appropriate <name>,
NCASE 1 13 223 "™ 1RTN 13RTN 223RTN
OTHERWISE .," BAD" CR CASEND
If top item on stack = 1 then 1RTN is executed.
If top item on stack is not equal to any of the defined
characters, control passes to code following OTHERWISE (if
present) or CASEND.

FO ST,’O CH (n "> -n)
Leaves the two s complement of a number; i.e., the result of
0 minus n.

FO,NO,,38,NE,"no-cursor",(->) (IBM PC)
Turns ecursor off,

Attribute(s): IMMEDIATE, CQLON-DEFINITION, and/or USER YARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, HN.CHANGED (from MMSFCRTH V.l.9)

A9-44 / MMSFORTH USERS MANUAL

NOT FO,ST,,26/40,UN,(flagl -> flag2)
Reverses the truth value of flagl. 0 becomes 1, and all other
values become 0. (Identical to 0= .)

NUMBER FO,NO,,0,UN,(addrl -> n addr2) or (addrl -> d addr2)
Converts the numeric ASCII string at addrl+l to binary
according to the current value of BASE. Leaves n or d (d if
a decimal point was found in the number) and sets HI# and
#PT. addr2 points to the first non-numerie character,

OCTAL FO,NO,,16/21,UN
Sets number conversion base at BASE to 8.

OR F0,ST,,26/0,UN,(nl n2 -> n3)
Leaves the bitwise inclusive-OR of two numbers,

OTHERWISE FO,NO,IM,25/21,UN
Optional default condition for ACASE and NCASE; if used,
can be followed by any Forth word(s).
Used in the form:
ACASE ..." +. OTHERWISE ... CASEND or
NCASE ..." ... OTHERWISE ... CASEND

ouTP FO,NO,,34/49,NE,"out-p",(byte n ~>)
Output byte to port n.

OUT/WORD FO,NO,,40,NE,"out-slash-word",(¢fa ->) (IBM PC)
Defining word for output switching words like CRT, PRINT.

OVER FO,ST,,0,UN,(nl n2 -> nl n2 nl1)
Leaves a copy of the second number on the stack.

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTE, GRAPHICS, RANDOM, ARRAYS, TOQOLKIT,
CLOCK; 79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

P!

P-IT

P&C

PAD

PAGE

PBLK

PC!

PC@

PCRT

MMSFORTH Glossary / A9-45

FO,NO,,49,NE,"p-store",(n port# ->) (IBM PC)
Outputs n to port# and port#+l1,

FO,NO,,44,NE,"print-it",(char ->) (IBM PC)
Output char (character) to printer.

FO,NO,,49,NE,"p-fetch",(port# -> n) (IBM PC)
Inputs 16 bit word from port# and port#+l.

FO,NO,,47,NE,"p-and-¢"(char ->) (IBM PC)
Prints character on video and printer,

FO,ST,,0,UN,(-> addr)

The starting address of a scrateh area used to hold character
strings for intermediate processing, PAD moves as definitions
are added to and deleted from the dictionary. In MMSFCRTH,
PAD is located 65 bytes above HERE,

Clear the terminal screen or perform an action suitable to
the output device currently active (Top-of-Form on printer,
ete,)

FO,NO,,0,UN,"p-block",(-> addr) (Disk System only)
Leaves address of a user variable which holds the lower limit
of the non-software-write-protected disk blocks.
MMSFORTH's "rubber write-protect tab", PBLK allows a
protected system area and an unprotected data area on a
single diskette, The user sets PBLK to a block number below
which the normal virtual mass storage feature will not write,
but will give an error message,

WARNING: DWTSECS overrides this protection feature!

FO,NO,,38,NE,"p—C—StOI‘e", (byte pOI't# "‘>) (IBNI PC)
Outputs byte to port number.

FO,NO,,490,NE,"p-c-fetch",(port# -> byte) (IBM PC)
Inputs byte from port#.

FO,NO,,32/47,UN,""p-c-r-t",(->)
Sets current output device to both video sereen and printer,

Attribute(s): IMMEDIATE, CQLON-DEFINITION, and/or USER VARIABLE;
Bloek# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-46 / MMSFORTH USERS MANUAL

PICK FO,ST,,34/49,NE,(n1 -> n2)
Return the contents of the nl-th stack value, not counting
nl itself,

2 PICK is equivalent to OVER.

PINIT FO,NO,,44,NE, "printer-init",(->) (IBM PC)
Reinitialize parallel printer driver.

PLIST FO,NO,,35/53,UN,"p-list",(n ->)
Does BLIST of Screen n with extra CR's (line feeds).

PLISTS FO,NO,,35/53,UN,"p-lists",(nl n2 ->)
Does multiple PLISTs starting at Screen nl for a count of n2,
Three screens exactly fill an 11-inch page.

PRINT FO,NO,,29&30/47,UN,(->)
Sets the printer to be the current output device,
On the TRS-8C this is normally the parallel port via the
Level II or Model III ROM printer-driver. References the
DCB address, so it may be linked with a preloaded serial
printer-driver routine. To do so: preset MMSFORTH System's
RAM size appropriately; load driver; then boot the re-sized
MMSFORTH System and store the routine's entry address at
16422,
On the IBM PC normally uses the parallel printer driver. A
serial printer driver is -supplied and can be activated by
changing Bloek 20,
See the alternate printer-drivers for examples of how a
custom printer driver might be done in Forth, For safety,
make your routine save and restore all registers between
character 1/0.

PTC FO,NO,,26/0,UN,"put-cursor”,{(nl n2 ->)
Puts cursor at video screen line nl and column n2.
: HELLO PAGE 8 20 PTC
" Hi there, programmer!" CR ;

PUT-CHRS FO,NO,,40,NE,"put-characters”,(adr count ->) (IBM PC)
Like MOVE-CHRS-TC-SCRN, but turns off video for color
board and returns cursor to position before command was
executed, '

Vocabulary or Extension: FQORTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
CLOCK; 79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

QUERY

QUESTION

QUIT

R>

R@

MMSFORTH Glossary / A9-47

FO,ST,,0,NE
Accept input of up to 80 characters or until a CR from the
keyboard, into the text input buffer. WORD may be used to
accept text from this buffer as the input stream, by setting
>IN and BLK to zero., Get the text input buffer starting
address (ecalled TIB in some Forths) with:

' QUERY @ 2+ @,

FO,NO,,0,UN

Repeats the last word from the input stream executed by the
text interpreter, issues a question-mark, then empties both
stacks and returns control to the operator. No _ok is issued.
Normally used for reporting errors. If the input stream is
from blocks, it also types the block, line and column numbers
at which the error occurred and sets EBLK to the error
block number and EPOS to the position within the block at
which the error occurred, for use with EEDIT .

FO,sT,,0,CH
Clears the return stack, sets execution mode, and returns
control to the terminal. No _ok is issued.

FO,ST,,0,UN,"r-from",(-> n)

Transfers n from the return stack to the user stack.

In 79-STANDARD, may only be used in a colon-definition,
In MMSFORTH, may be used anywhere,

FO,ST,,0,NE,"r-fetch",(-> n)

Copy the number on the top of the return stack to the user
stack.

In 79-STANDARD, may only be used in a colon-definition,

In MMSFORTH it is identical to I and may be used anywhere.

RANDOMIZE RA,NO,53/72, UN

RBLK

Randomizes the random number generator. Like BASIC's
RANDOM (TRS-80) or RANDOMIZE (IBM PC) command.

FO,NO,0,UN,"r-block",(addr n ->)

Virtual read block routine.

Reads Screen n into memory at addr. Uses routine whose
code field address (CFA) is stored at 21 MMS 6 + (See
Appendix Al2 for a listing of the MMS Table.)

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-48 / MMSFORTH USERS MANUAL

REPEAT

RFR

RIGHT$

RN1

RND

ROLL

ROT

S>L

Vocabulary
STRINGS,
CLOCK;

FO,ST,IM&CO,16/21,CH
Used in a colon-definition in the form:
BEGIN ... WHILE ... REPEAT
At run-time, if WHILE test was true REPEAT returns to just
after the corresponding BEGIN,. (See WHILE).

RA,NO,,53/72,UN,"r-f-r",(=> n)
Puts the value of the refresh register on the stack,

ST,NO,,50/69,UN,"right-string™,($1 n -> $2)
Starting from the right, takes n characters from $1 to make
$2. $2 is placed in PAD,

RA,NO,,53/72,UN,"r-n-one"
Generates the next random number and stores it in SEED.

RA,NO,,53/72,UN,"I‘—H—G",(nl "> nZ)
Generates a random number n2 between 1 and nl inclusive.

FO,ST,’34/49,NE7(e I -> a0)
Extract the n-th stack value to the top of the stack, not
counting n itself, moving the remaining values into the
vacated position, n must be greater than zero.

3 ROLL is equivalent to ROT

FO,ST,,0,UN,"rote",(n1 n2 n3 -> n2 n3 nl)
Rotates the top three values, bringing the deepest to the
top. '

AS,NO,UV,20,CH,"r-p",(-> addr) (TRS-80)
Leaves address of Return-stack Pointer,

FO,NO,UV,0,NE,"s-zero",(-> addr)

Leaves the address of a user variable containing the address
of the bottom of the user stack, Note that SO0 is a variable,
while 'S is a constant.

LA,NO,,83,NE,"s-to-1",(addr -> daddr)
Converts a short-address (relative to start of FORTH) to its
long-address (absolute, double-precision number) equivalent.

or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTE, GRAPHICS, RANDOM, ARRAYS, TOQOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

MMSFORTH Glossary / A9-49

SAVE-BUFFERS FO,ST,,36/54,NE

Write to mass storage, all the buffers that have been flagged
as UPDATEd,

SCAN-CODE F0,NO,,0,NE,,(-> addr) (IBM PC)

SCR

SDEN

SEED

Returns address of byte containing scan code of last
chraracter input by ?KEY or KEY.

F0,ST,UV,35/53,UN,"s-e-r",(-> addr)
Leaves the address of a user variable containing the number
of the screen most recently listed or edited,

FO,I\;O,,23,UN,"S-den",(n ->) (TRS-80 M.3 Disk System
Only
Sets Drive n to single-density. See DDEN,

Variable, initially containing seed wused in Lehmer
multiplication congruential random number generator,

Sets border color of video display.

SET-COLOR FO,NO,,48,NE,(background foreground ->) (IBM PC)

SET-DATE

SET-MODE

Set color and monochrome display attributes in current
window, Background and foreground may be from 0 to 15,
Backgrounds of 8 or greater create blinking characters, (See
COLOR in IBM BASIC Manual, or see IBM Technical
Reference.)

CL,NO,,60/79,NE,(nl n2 n3 ->)
Sets the system date to nl month, n2 day, n3 year.
Example:

12 25 83 SET-DATE

FO,NO,,40,NE,(char ->) (IBM PC)

Sets video display mode to mode# represented by char. (See
IBM Technical Reference, p. A-43, "Video 1/0 Set Mode"
routine,)

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.l.9)

A9-50 / MMSFORTH USERS MANUAL

SET-TIME CL,NO,,60/79,NE,(nl n2 n3 ->)
Sets the system time to nl hours, n2 minutes, n3 seconds.
Example:
23 45 0 SET-TIME

SET-WINDOW FO,NO,,48,NE,(flag nl n2 n3 n4 n5 ->) (IBM PC)

Defining word for windows on video sereen, where:

flag: 0 = no seroll; 1 = scroll

nl: attribute; first 4 bits are background ecolor or
monochrome attribute; last 4 bits are foreground color or
monochrome attribute, In Hex, shows as two characters,
Background: (-7 are eight colors; 8-15 are blinking coloer,
Foreground: 0-~15 are 16 colors.

n2: bottom-right-row; valid values are 0-24, Note: if
this or any of the next three values is too large or overlap,
it may make your window go off the bottom of the video
display or be invisible,

n3d: bottom-right-column; valid values are 0-79,

n4: top-left-row; valid values are 0-24.

n5: top-left-cclumn; valid values are 0-79,
W/0 is the standard full-screen, white-on-black window,
Example in color:

HEX 1 53 DECIMAL 20 30 0 0

SET-WINDOW W/CYAN-ON-MAGENTA

sets a scrolling window whieh is 30 wide and 20 long (from
0,0 to 20,30) with characters of Color 5 (Cyan) on a
background of Color 3 (Magenta). It can be invoked by the
word, W/CYAN-ON-MAGENTA . Changing the 53 to D3 will
cause this window to blink when invoked.

SIGN FO,ST’C0,0,CH,(n —>)
Inserts an ASCII "-" (minus sign) into the piectured numeric
output string if n is negative,

SPACE F0,S8T7,,0,UN
Outputs a single ASCII blank character (32 decimal),

SPACES F0,S8T,,21/38,UN,(n ->)
Outputs n spaces, Will output no spaces if n is less than or
equal to zero.,

Vocabulary or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
STRINGS, CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
CLOCK; 79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

STATE

STR$

STRING$

SWAP

T/S

TAPE

TAPE-DISK

TIME

TINDEX

MMSFORTH Glossary / A9-51

F0,8T,UV,0,UN,(-> addr)
Leaves the address of a one-byte user variable containing
the compilation state., A non-zero content indicates
compilation is oecurring.

STATE C?
prints 1 in compile mode or 0 in execute mode,

sT,NO,,52/71,UN,"s-t-r-string",(n -> $)
Converts n to a string in PAD and leaves PAD address on
stack,

ST,NO,,52/71,UN,"string-string",(n char -> §$)
Returns a string of characters defined by char of a length of
n.
10 $m *" STRINGS $. or
$CONSTANT STARS *" 10 STARS STRINGS$ $.
Both return *®#%skkkx®kk .

FO,ST,,O,UN,(nl n2 "> 1'12 I’ll)
Exchanges the top two items on the stack,

DP,ST,,45/64,UN,"t-divide-s",(ut un -> ud)
Divides a triple number by a single number leaving a double
number result,

CA,NO,,58/77,UN (Disk system only.)
Directs mass storage read/write operations (RBLK, WBLK,
ete,) to the cassette recorder.

CA,NO,,58/77,UN,(nl n2 ->) (Disk System only)
Transfers consecutive tape blocks to disk, starting at Block
nl for n2 blocks.

CL,NO,,60/79,NE
Outputs the system time in hours, minutes, seconds and
tenths of seconds.

cL,NO,,60/79,NE,"t-index",(nl n2 ->)
Outputs index listing with title, date, time and page number,
Resets TPAGE to 1 at start (+TINDEX does not).

Attribute(s): IMMEDIATE, CQOLON-DEFINITION, and/or USER VYARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-52 / MMSFORTH USERS MANUAL

TITLE

THEN

TL

TLINE

TLISTS

TO-B/W

TO-COLOR

TOFF

Vocabulary
STRINGS,
CLOCK;

CL,NO,,60/79,NE

To change the title on TLISTS and TINDEX listings, enter
TITLE followed by one blank and up to 42 characters of title
information terminated by a carriage return or end of screen,

FO,ST,IM&CO,16/21,UN

Used in a colon-definition in the form:
IF «. ELSE ... THEN or
IF ... THEN

THEN marks the point where execution resumes after ELSE
(or IF when no ELSE is present).

FO,NO,,35/53,CH,"t-1",(nl n2 ->)
Qutputs with line numbers, lines nl through n2 of the sereen
whose number is in SCR.

CL,NO,,60/79,NE,"t-line"
Qutputs the title, date, time, and page number line for
TLISTS and TINDEX.

CL,NO,,60/79,NE,"t-lists",(nl n2 ->)

Does BLIST starting at Block nl for n2 blocks, adding title,
date, time and page number, formatted three blocks per
page. Resets TPAGE to 1 at the start (+TLISTS does not).

FO,NO,,50,NE,"to~b-slash-w",(->) (IBM PC)
Sets current-video-board to black-and-white and does not
initialize black-and-white board. (B/W&COLOR option.)

FO,NO,,50,NE,(->) (IBM PC)
Sets current-video-board to color and does not initialize color

board. (B/W&COLOR option.)

FO,NO,,56/75,UN, "tape~coff"
Deactivates the tape recorder motor relay,

or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NOQT-STD;

TOKEN

TON

TPAGE

TRY

TYPE

U,

U.R

MMSFORTH Glossary / A9-53

FC,NO,,0,UN,(char addrl -> addr2)

Starting at addrl, compares each character to char. If char
is 32 (ASCII blank), skips any characters equal to char until
it encounters a not-equal character. Then counts all
not-equal characters until it encounters another equal
character or a zero (end-of-data indicator)., The found token
(string of not-equal characters) is left at HERE (top of
dictionary) with the first character equal to the number of
characters in the token., The address of the character ending
the token (next after end of token) is left as addr2, or zero
if no token is found.

This word is used in the parsing routines that set up new
words in the dietionary.

FO,NO, s 56/75, UN, "tape"on"
Activates tape recorder motor relay.

CL,NO,UV,60/79,NE,"t-page",(-> addr)
Leaves address of variable holding current page number for
TLIST, TINDEX, ete,

TO,NO,,61/80,NE
Diagnostic and learning tool, used in the form:
TRY <name>
Prints the stack contents before and after executing <name>,

FO,ST,,O,UN,(addl‘ n ">)
Outputs n characters beginning at addr.

FO,ST,,0,CH,"u-times",(unl un2 -> ud)
Performs an unsigned multiplication of unl by un2, leaving
the double number product ud. All values are unsigned,

FO,ST,’32/47,NE,"U‘dOt"’(un "'>) 3
Qutput un, converted according to BASE, as an unsigned
number with one trailing blank,

FO,NO,,32/47,NI,"u~dot-r",(unl n2 ->)

Cutput unl as an unsigned number right justified in a field
n2 characters wide, Outputs all characters of nl even when
it is wider than n2,

Attribute(s): IMMEDIATE, CQLON-DEFINITION, end/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.1.9)

A9-54 / MMSFORTH USERS MANUAL

U/MOD

U<

UNLN-CUR

UNTIL

UPDATE

uT

VAL

Vocabulery
STRINGS,
CLOCK;

FO,ST,,0,NE,"u~divide-mod",(ud unl -> un2 un3)

Perform the unsigned division of double number ud by unl,
leaving the remainder un2, and quotient un3d. All values are
unsigned,

FO,ST,,0,NE,"u-less~than",(unl un2 -> flag)
Leave the flag representing the magnitude comparison of unl
< un2 where unl and un2 are treated as 16-bit unsigned

integers.

FO,NO,,38,NE, "underline-cursor,(->) (IBM PC)
Sets the underline cursor character,

FO,ST,IM&C0,16/21,CH,(flag ->)

Within a colon-definition, mark the end of BEGIN ... UNTIL
loop, which will terminate based on a flag. If flag is true,
the loop is terminated. If flag is false execution returns to
the first word after BEGIN.

BEGIN ... UNTIL structures may be nested,

FO,sT,,0,UN

Marks the most recently referenced block as modified, The
block will subsequently be automatically transferred to mass
storage should its memory buffer be needed for storage of a
different block, or upon execution of SAVE-BUFFERS or
FLUSH.,

FO,NO,UV,0,NE,"u-t",(-> addr)

Leaves the address of a user variable containing the number
of blocks to load. This is set to 1 for LOAD, or the number
of blocks for LOADS. If executing a LOADS and --> is
encountered, UT is reset to 1.

ST,NO,,SZ/V].’UN,($ "'> n)
Returns the value n represented by the characters in $
converted according to BASE.

or Extension: FORTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOQOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NQT-STD;

MMSFORTH Glossary / A9-55

VARIABLE FO,ST,,17/22,CH

A defining word executed in the form:

VARIABLE <name>
to create a dictionary entry for <name> and allot two bytes
for storage in the parameter field, The application must
initialize the stored value., (However, MMSFORTH clears the
value to zero.)
When <name> is later executed, it will place the storage
address on the stack,

VOCABULARY FO,ST,,17/22,UN

w/0

WBLK

WHILE

A defining word executed in the form:
VOCABULARY <name>

to create (in the CURRENT vocabulary) a dictionary entry
for <name>, which specifies a new ordered list of word
definitions, Subsequent execution of <name> will make it the
CONTEXT vocabulary, When <name> becomes the CURRENT
vocebulary (see DEFINITIONS), new definitions will be
created in that list. New vocabularies ‘'chain' to FORTH.,
That is, when a dictionary search through a vocabulary is
exhausted, FORTH will be searched, Standard vocabularies
are: FORTH, EDITOR, ASSEMBLER.

FO,NO,,48,NE, "w-slash-zero",(->) (IBM PC)
Returns to standard display window,

Fo,NO,,0,UN,"write-bloek",(addr n ->)

Virtual write-block routine,

Writes Block n from memory at addr., Uses the routine whose
code field address (CFA) is stored at 21 MMS 8 + (See
Appendix A12 for an explanation of these tables.)

FO,ST,IN&C0,16/22,CH,(flag ->)
Used in a colon-definition in the form:

BEGIN ... flag WHILE ... REPEAT
Selects conditional execution based on flag, On a true flag,
continues execution through REPEAT, which then returns
back to just after BEGIN, On a false flag, skips execution
to just after REPEAT, exiting the structure.

Attribute(s): IMMEDIATE, COLON-DEFINITION, and/or USER VARIABLE;
Block# (TRS-80/IBM, or 0 if source code not given);
Status: NEW, CHANGED, UNCHANGED (from MMSFORTH V.l1.9)

A9-56 / MMSFORTH USERS MANUAL

WORD

XOR

Y/N

[COMPILE]

Vocabulary
STRINGS,
CLOCK;

FO0,ST,,0,CH,(char -> addr)

Receives characters from the input stream, ignoring leading
delimiters if char is ASCII blank (decimal 32) until the
non-zero delimiting character, char, is encountered or the
input stream is exhausted., The characters are stored as a
string with the character count in the first character
position. The actual delimiter encountered (char or null) is
stored at the end of the text but not included in the count.
If the input stream was exhausted as WORD is called, then a
zero length will result, The address of the beginning of the
string is left on the stack. (In MMSFORTH the address is
HERE).

FO,ST,,0,UN,"x-or",(n1 n2 -> n3d)
Leave the bitwise exclusive~-OR of two numbers,

FO,NO,,21/38,UN,"y-slash-n",(-> flag)
Prints "™(Y/N) ? ", then waits until the Y or N key is
pressed, Y puts a zero on the stack, N puts a 1 on the
stack, The Y or N is not output. No other characters are
accepted as input.,

: DO-AGAIN BEGIN CR ." Do again" Y/N UNTIL ;

FO,ST,IM,16/21,NE,"left-bracket"
End the compilation mode. The text from the input stream is
subsequently executed, See] .

FO,ST,IM&CC,17/22,NE, "bracket-compile™
Used in a colon-definition in the form:

[COMPILE] <name>
Force compilation of the folowing word. This allows
compilation of an IMMEDIATE word when it would otherwise
be executed.

FO,sT,,16/21,NE,"right-bracket"
Set the compilation mode. The text from the input stream is
subsequently compiled, See [.

or Extension: FQRTH, ASSEMBLER, EDITOR, DBL-PREC,
CASSETTES, GRAPHICS, RANDOM, ARRAYS, TOOLKIT,
79-STANDARD Status: STANDARD, EXTENSION, NOT-STD;

8080 ASSEMBLER Glossary / Al0-1

A10.0 MMSFORTH 8080 ASSEMBLER (TRS-80)

Al10.1 GENERAL INFORMATION

The MMSFORTH System comes equipped with a full 8080 Assembler
which uses about 1.2K of user RAM and provides all necessary
instructions for normal work. (Exeept block moves, which you can do with
the MMSFORTH word, CMOVE.) Assembly language is a different subject
than Forth,and a challenging one. Instruction books and courses on
assemblers are available elsewhere., This section only treats those aspects
of our Assembler which differ from more conventional ones.

Those MMSFORTH users who prefer the bulkier (about 3.5K RAM) and
less consistent Z80 instruction set, may purchase a full Z80 Assembler as
part of the MMSFORTH UTILITIES DISKETTE. Alternatively, individual
780 instructions may be added to the 8080 Assembler, as can any new
words which are hardware compatible. Or, Z80 mnemonics may be defined
as synonym definitions. The Assembler cross-reference tables in this
appendix are provided to assist you. MMS recommends that you try the
8080 Assembler before settling for one of these less direct and less
computer-efficient alternatives.

Both MMSFORTH Assemblers remain unchanged from Version 1.9, with
the sole exception that R[(R-Uparrow) is now RP . Also note that
ASSEMBLER words are not addressed by the 79-STANDARD.

In general, the 8080 Assembler supplied with MMSFORTH follows the
mnemonies of standard 8080 Assembler coding with the word order
conventions of the Forth language. This means operands must be entered
before the operation code.

Differences occur in the handling of conditional jumps, returns and
calls, and in the implementation of the Forth-like functions IF ... ELSE ...
THEN, BEGIN ... UNTIL, and BEGIN ... WHILE ... REPEAT.

Conditional operators are used to trigger conditional jumps, ecalls and
returns,
Example:
4000 #0 JMPC is the equivalent of JNZ 4000,

Conditional operators are also used with the IF ... ELSE ... THEN,
BEGIN .. UNTIL, and BEGIN .. WHILE .. REPEAT constructs in the
Assembler in the same way as in Forth,

Example:
CY IF CODEl1l ELSE CODE2 THEN
executes CODEL if carry flag was set, otherwise executes CODE2.

A10-2 / MMSFORTH USERS MANUAL

The structures are:
BEGIN code conditional operator UNTIL
Conditional operator IF code ELSE code THEN
BEGIN code conditional operator WHILE code REPEAT

General use of the MMSFORTH Assembler is illustrated in the
following example demonstrating the code for the MMSFORTH word + :

+ adds the top 2 numbers on the stack,

The code definition is:
CODE + HL POP DE POP DE DAD PSH

CODE puts MMSFORTH into ASSEMBLER mode,

+ is name of word being defined.

HL POP Top of stack is popped into HL

DE POP 2nd on stack is popped into DE

DE DAD DE is added to HL

PSH HL is pushed back on the stack and control is

returned to the Forth Inner Interpreter,
NOTICE THE FOLLOWING:

Useof POPs to get arguments. (In this implementation of
Forth the arguments are on the hardware stack.)

Useof PSH to save the result (in HL register) on the stack
and return to the FORTH Inner Interpreter, PSH2 saves
first the DE, then the HL, registers on the stack and
returns to FORTH. (All code definitions must end with
NEXT , PSH , or PSH2.)

Register pair BC, which contains Forth's pseudo program
counter, has not been changed,

Register pairs must be addressed by their combined names.

Assembler code is not used within Forth colon definitions.

8080 ASSEMBLER Glossary / A10-3

Al10,2 LINKAGE CONVENTIONS USED BY MMSFORTH

BC contains Forth's pseudo program counter.

DE contains the parameter field address of the routine
invoking this ecode procedure,

IY contains the address of NEXT.
Arguments from the Forth program are on the stack,

The Version 2.0 Disk System is run with interrupts enabled
(they were disabled on Version 1.9).

(unless you really know what you are doing).

In general it is best to think of the Assembler as not using the stack
because, although it does use the stack while generating code, it does
not affect the stack during execution of the generated code except

‘ explicitly through the use of POP, PUSH, PSH, and PSH2.

Al0-4 / MMSFORTH USERS MANUAL

Al10.3 MMSFORTH ASSEMBLER CROSS-REFERENCE TABLES

The following table is listed in ascending alphabetical order of the
standard 780 Assembler mnemonics. The first column gives the standard
780 Assembler mnemonie, the second column gives the MMSFORTH Z80
Assembler mnemonic. The third column gives the corresponding MMSFORTH
8080 Assembler mnemonic, The fourth column gives the reference page in
the Radio Shack TRS~80 Editor/Assembler Manual for the standard Z80
mnemonie in Column 1,

If you also own THE DATAHANDLER (database management system in
MMSFORTH), you are in luck! One of its sample files, named ASSEM, is
the source for this table, It can be used quickly and easily to generate
print-outs or video displays of selected groupings of words of your choice,

8080 ASSEMBLER Glossary / A10-5

A10.3.1 CROSS REFERENCE LISTING OF 8080 AND Z80 -MNEMONICS

Standard-Z80

ADC A,S
ADC HL,SS
ADD A,(HL)
ADD A,(IX+D)
ADD A,(I1Y+D)
ADD A,N
ADD A,R
ADD HL,SS
ADD IX,PP
ADD IY,RR
AND N

AND S

BIT B,R

BIT B,(HL)
BIT B,(IX+D)
BIT B,(IY+D)
CALL CC,NN
CALL NN
CCF

EI

EX (SP),HL
EX (SP),IX
EX (SP),IY
EX AF,AF!
EX DE,HL

EXX

HALT

FORTH-Z-80

S A ADC
SS HL ADC
(HL) A ADD
D (IX) A ADD
D (IY) A ADD
N A ADD

R A ADD

SS HL ADD
PP IX ADD
RR IY ADD
N AND

S AND

R B BIT
(HL) B BIT
D (IX) B BIT
D (IY) B BIT
NN CC CALL
NN CALL
CCF

S CP

CPD

CPDR

CPI

CPIR

CPL

DAA

IX DEC

1Y DEC

M DEC

SS DEC

DI

NN DJINZ

El

HL (SP) EX
IX (SP) EX
IY (SP) EX
AF' AF EX
HL DE EX
EXX

HALT

FORTH-8080
S ADC
M ADD
N ADI

R ADD
SS DAD

NN CC CALLC
NN CALL
CMC

S CMP

CMA
DAA

M DCR
SS DCX
DI

El
XTHL

XCHG
HLT

R.S.Manual

46
63
44
44
45
43
43
63
64
65
49
49
81
81
82
82
93

A10-6 / MMSFORTH USERS MANUAL

Standard-Z380

IM 0

M 1

M 2

IN A,(N)
IN R,(C)
INC (HL)
INC (IX+D)
INC (IY+D)
INC IX
INC 1Y
INC R
INC SS
IND

INDR

INI

INIR

JP (HL)
JP (IX)
JP (1Y)
JP CC,NN
JP NN

JR C,E
JR E

JR NG,E
JR NZ,E
JR Z,E

FORTH-Z-80

0 IM

1 1M

2 IM

N A IN
(C) RIN
(HL) INC
D (IX) INC
D (IY) INC
IX INC

1Y INC

R INC

SS INC
IND

INDR

INI

INIR

(HL) JP
(1x) Jp
(1y) Jp
NN CC Jp
NN JP

NN C JR
NN JR

NN NC JR
NN NZ JR
NN Z JR

FORTH-8080

N IN

M INR

R INR
SS INX

PCHL

NN CC JMPC
NN JMP

R.S.Manual

61
61
62
98
98
53
54
54
66
66
53
65
101
102
99
160
89
90
90
86
86
87
87
88
89
88

Standard-Z80

LD (BC),A
LD (DE),A
(HL),N
(HL),R
(IX+D),N
(IX+D),R
(IY+D),N
(I1Y+D),R
(NN),A
(NN),DD
(NN),HL
(NN),IX
(NN),IY
A,(BC)
A,(DE)
A,(NN)
A,lI

A,R
DD,(NN)
DD,NN
HL,(NN)
I,A
IX,(NN)
IX,NN
1Y,(NN)
IY,NN
R,(HL)
R,(IX+D)
R,(I1Y+D)
R,A
R,R!'
SP,HL
SP,IX
SP,1Y
LDD

LDDR

LDI

LDIR

EEEEEEEEEEEE5E5EBEEEEEEEEEEEEEEEEEEE

FORTH-Zz-80

A (BC) ID
A (DE) ID

FORTH-8080

BC STAX
DE STAX
N M MVI
R M MOV

NN STA
NN SHID
BC IDAX

DE LDAX
NN LDA

NN DD LXI
NN LHLD

M R MOV

N R MVI
R' R MOV
SPHL

8080 ASSEMBLER Glossary / A10-7

R.S.Manual

20
20
17

Al0-8 / MMSFORTH USERS MANUAL

Standard-Z80

NEG
NOP

OR N

OR S
OTDR
OTIR

ouT (C),R
OUT (N),A
oUTD
OUTI

POP IX
POP 1Y
POP QQ
PUSH IX
PUSH 1Y
PUSH QQ
RES B,M
RET

RET CC
RETI
RETN

RL M

RLA

RLC (HL)
RLC (IX+D)
RLC R
RLCA
RLD

RR M
RRA

RRC M
RRCA
RRD

RST P

SBC A,S
SBC HL,SS
SCF

SET B,(HL)
SET B,(IX+D)
SET B,(I1Y+D)
SET B,R
SLA M
SRA M
SRL M
SUB S
XOR N
XOR S

FORTH-Z-80

NEG
NOP

N OR

S OR
OTDR
OTIR

R (C) ouUT
A N OUT
OTD

OTI

IX POP

IY POP

QQ POP

IX PUSH
1Y PUSH
QQ PUSH
M B RES
RET

CC RET
IRET
NRET

M RL

RLA

(HL) RLC
D (IX) RLC
R RLC
RLCA

RLD

M RR
RRA

M RRC
RRCA
RRD

P RST

S A SBC
SS HL SBC
SCF

(HL) B SET
D (IX) B SET
D (IY) B SET
R B SETT
M SLA

M SRA

M SRL

S SUB

N XOR

S XOR

FORTH~-8080

NOP
N ORA
S ORA

N OUT

QQ POP

QQ PUSH

RET
CC RETC

RAL

RLC

RAR
RRC

P RST
S SBB

STC

S SUB
N XRA
S XRA

R.S.Manual

57
59
50
50
107
105
103
103
106
104
33
33
32
31
32
31
85
94
95
96
96
73
69
71
72
71
69
79
75
70
74
70
80
97
48
64
58
83
84
84
83
76
7
78
47
51
51

8080 ASSEMBLER Glossary / A10-9

Al10.4 PARTIAL GLOSSARY OF 8080 ASSEMBLER WORDS (SEE A10,5)

#0

<0

>=0

?ARGERR

BC

BEGIN

CALL

CALILC

CYy

DE

ELSE

ASSEMBLER Screen 18
NOT EQUAL ZERO conditional operator.

ASSEMBLER Screen 18
LESS THAN ZERO (8080-minus) conditional operator.

ASSEMBLER Screen 18
EQUAL ZERO conditional operator,

ASSEMBLER Screen 18
GREATER THAN OR EQUAL TO ZERO (8080-positive)

conditional operator.

ASSEMBLER Screen 19
Error message generator.

ASSEMBLER Screen 18
Registers B and C together,

ASSEMBLER Screen 20

Part of the BEGIN ... UNTIL and

BEGIN .. WHILE ... REPEAT structures, Similar to BEGIN in
FORTH vocabulary, See MMSFORTH Glossary and explanation
of MMSFORTH ASSEMBLER attached to this glossary.

ASSEMBLER Screen 18
8080 op-code, unconditional call.

ASSEMBLER Screen 19

CALL CONDITIONAL., This plus the conditional operators
replace all conditional 8080 calls, See the explanation of
MMSFORTH ASSEMBLER attached to this glossary for a
fuller description of how conditional calls work,

ASSEMBLER Screen 18
CARRY conditional operator,

ASSEMBLER Screen 18
Registers D and E together,

ASSEMBLER Screen 20

Part of the IF ... ELSE ... THEN structure, Similar to ELSE
in FORTH vocabulery, See MMSFORTH Glossary and
explanation of MMSFORTH ASSEMBLER attached to this

glossary.

A10-10 / MMSFORTH USERS MANUAL

HL

JMPC

MOV

NC

NEXT

PE

PSH

PSH2

ASSEMBLER Screen 18
Registers H and L together,

ASSEMBLER Screen 20
Part of the IF ... ELSE ... THEN structure, Similar to IF in

FORTH vocabulary, See MMSFORTH Glossary and explanation
of MMSFORTH ASSEMBLER attached to this glossary.

ASSEMBLER Screen 18
8080 op~code, unconditional JUMP,

ASSEMBLER Screen 18

JUMP CONDITIONAL. This plus the conditional operators
replace all conditional 8080 jumps. See the explanation of
MMSFORTH ASSEMBLER attached to this glossary for a
fuller description of how conditional jumps work.

ASSEMBLER Screen 18
Memory indicator for 8080 code.

ASSEMBLER Screen 19
8080 op-code.
NOTE: The format for using MOV is:
source-register destination-register MOV
Example:
A B MOV
copies contents of Register A into Register B.

ASSEMBLER Screen 18
NO CARRY conditional operator.

ASSEMBLER Screen 20
Returns te the FORTH inner interpreter.

ASSEMBLER Screen 18
PARITY EQUAL conditional operator,

ASSEMBLER Screen 18
PARITY ODD conditional operator,

ASSEMBLER Screen 19
8080 op-code,

ASSEMBLER Screen 20
Pushes HL, then returns to the FORTH inner interpreter.

ASSEMBLER Screen 20
Pushes DE, then HL, then returns to the FORTH inner
interpreter.

PSW

PUSH

REPEAT

THEN

UNTIL

WHILE

8080 ASSEMBLER Glossary / A10-11

ASSEMBLER Screen 18
PROCESSOR STATUS WORD (i.e., Register A plus flags).

ASSEMBLER Screen 19
8080 op-code.

ASSEMBLER Screen 20

Part of the BEGIN .. WHILE .. REPEAT conditional
structure, Similar to REPEAT in FORTH., See MMSFORTH
Glossary and explanation of MMSFORTH ASSEMBLER attached
to this glossary.

ASSEMBLER Screen 18
8080 op~code.

ASSEMBLER Screen 19

RETURN CONDITIONAL. This plus the conditional operators
replace all conditional 8080 returns., See the explanation of
MMSFORTH ASSEMBLER attached to this glossary for a
fuller description of how conditional returns work,

ASSEMBLER Screen 20
Address of the return stack pointer.

ASSEMBLER Screen 18
STACK POINTER.

ASSEMBLER Screen 20

Part of the IF .. ELSE ... THEN structure Similar to THEN
in FORTH vocabulary., See MMSFORTH Glossary and
explanation of MMSFORTH ASSEMBLER attached to this

glossary,

ASSEMBLER Screen 20

Part of the BEGIN ... UNTIL structure. Similar to UNTIL in
FORTH vocabulary, See MMSFORTH Glossary and explanation
of MMSFORTH ASSEMBLER attached to this glossary.

ASSEMBLER Screen 20

Part of the BEGIN .. WHILE .. REPEAT conditional
structure, Similar to WHILE in FORTH. See MMSFORTH
Glossary and explanation of MMSFORTH ASSEMBLER attached
to this glossary,

A10-12 / MMSFORTH USERS MANUAL

Al10,5 ALL 8080 ASSEMBLER WORDS BY CATEGORY

Return words:
PSH2 PSH NEXT

Conditional jump words:
CALLC JMPC RETC

Conditional operators:
#0 <0 =0 >=0 CY NC PE PO

Conditional structure words:
IF ELSE THEN
BEGIN UNTIL

BEGIN WHILE REPEAT

Registers:

A B BC C D DE E H
HL L M PSW SP

Op-codes:

ACI ADC ADD ADI ANA ANI BCO CALL
CMA CMC CMP CPI DAA DAD DCR DCX
DI El HLT IN INR INX JMP LDA
IDAX LHID LXI MOV MVI NOP ORA ORI
OUT PCHL POP PUSH RAL RAR RET RLC
RRC RST SBB SBI SHID SPHL STA STAX
STC SUB SUI XCHG XRA XRI XTHL

Defining words (to create Assembler):
?ARGERR 1BY 1RG 171 1YP 1YS 2BY
2RG 3BY 3YC CRG

Special:
RP

TRS-80 Keyboard Definitions / All-1

All.l TRS-80 KEYBOARD KEY DEFINITIONS (MMSFORTH ASCII codes)
KEY -SYMBOL KEY Shift-KEY Control-KEY Alternate-KEY

(Dec/Hex) (Dec/Hex) (Dec/Hex) (Dec/Hex)
@ ° 64 490 96 60 X X 128 80
A a 65 41 97 61 1 1 129 81
B b 66 42 98 62 2 2 130 82
C ¢ 67 43 99 63 3 3 131 83
D d 68 44 100 64 4 4 132 84
E e 69 45 101 65 5 5 133 85
F f 70 46 102 66 6 6 134 86
G g 71 417 103 67 7 7 135 87
H h 72 48 104 68 8 8 136 88
I i 73 49 105 69 9 9 137 89
Jd] 74 4A 106 6A 10 A 138 8A
K k 75 4B 107 6B 11 B 139 8B
L 1 76 4C 108 6C 12 C 140 8C
M m 77 4D 109 6D 13 D 141 8D
N n 78 4E 110 6E 14 E 142 8E
O o 79 4F 111 6F 15 F 143 8F
P p 80 50 112 70 16 10 144 90
Q q 81 51 113 71 17 11 145 91
R r 82 52 114 72 18 12 146 92
S s 83 53 115 173 19 13 147 93
T t 84 54 116 74 20 14 148 94
U u 85 55 117 75 21 15 149 95
vV v 86 56 118 76 22 16 150 96
W w 87 57 119 77 23 17 151 97
X x 88 58 120 78 24 18 152 98
Y vy 89 59 121 79 25 19 153 99
Z z 90 5A 122 T7A 26 1A 154 9A
1 ! | 49 31 33 21 124 T7C X X
2 » = 50 32 34 22 94 5E X X
3 # 51 33 35 23 159 9F X X
4 3 52 34 36 24 31 1F X X
5 % 53 35 37 25 X X X X
6 & 54 36 38 26 X X X X
7 1 * 55 37 39 27 96 60 X X
8 ([56 38 40 28 91 5B X X
9)] 57 39 41 29 93 5D X X
0 48 30 X X 128 890 X X
s ¥ 7 58 3A 42 2A 126 T7E X X
3+ 59 3B 43 2B 127 TF X X
, < 1 44 2C 60 3C 123 1TB X X
- = _ 45 2D 61 3D 95 5F X X
. > 1} 46 2E 62 3E 125 7D X X
/7 0\ 47 2F 63 - 3F 92 5C X X

All-2 / MMSFORTH USERS MANUAL

KEY~-SYMBOL KEY Shift-KEY Control-KEY Alternate-KEY

(Dec/Hex) (Dec/Hex) (Dec/Hex) (Dec/Hex)
Enter 13 0D 13 0D 13 0D 13 0D
Space 32 20 32 20 32 20 32 20
Uparrow 27 1B 155 9B 187 BB 219 DB
Downarrow 28 1C 156 9C 188 BC 220 DC
Leftarrow 29 1D 157 9D 189 BD 221 DD
Rightarrow 30 1E 158 9E 190 BE 222 DE

Notes:
X = no character generated,
Model I display characters may not correspond to above.

All,2 MMSFORTH CRT CONTROL CODES (TRS-80)

VALUE VIDEO EFFECT (When EMITted)
(Dee/Hex)
08 08 Backspace cursor and erase character,
09 09 Tab (0,8,16,...)
10 0A LF - move cursor to start of next line and erase line,
12 0C Page - move cursor to upper left corner and erase screen.
13 0D CR - move cursor to start of next line and erase line. ’
14 OE Turn cursor on.
15 OF Turn cursor off.
21 15 Swap space compression/special characters.
22 16 Swap special/alternate characters,
23 17 Double width characters.
24 18 Backspace cursor one character,
25 19 Advance cursor one character,
26 1A Move cursor down one line,
27 1B Move cursor up one line,
28 1C Move cursor to upper left corner of sereen,
29 1D Move cursor to start of line.
30 1E Erase to end of line.

31 1F Ersse to end of screen,

TRS-80 System Constants Tables / Al12-1

A12,0 SYSTEM CONSTANTS (MMSFORTH V2.0, TRS-80 DISK SYSTEM)

The following tables are included to assist advanced users in their own
experiments, Like most internal details, MMS does not support them as a
part of the system license but will provide such support as a consulting
service,

DISK DATA:

n DISKDATA Array of 8 groups, each with 9 bytes for 1 drive, plus
2 bytes. The group after the highest drive defined
contains zero in the first two bytes.

0+ @ #blocks on drive.

2+ @ #bytes per sector.

4 + Cd@ Step speed code byte.

5 + CQ@ High track number,

6 + C@ First sector number on track.

7 + C@ Last sector number-plus-one on track,

8 + C@ Bits 0..3 - drive select bit, MODEL I & III
Bit 4 (16) - side 0/1, MODEL III only

Bit 7 (128) - single/double density MODEL III only

BUFFER DATA:

n BUFFDATA Array of 2 to n groups,
of 6 bytes for each block buffer.

0 + @ Block# currently in buffer; -1 = empty.

2 + C@ Blocks usage sequence#.

3 +CQ Update byte.

4 + @ Addr of buffer, buffer is followed by two bytes of

zeroes,

CURSOR DATA:

CURSOR @ Character for cursor display.

2 +Cd Cursor on-time eycle count, System default=9,

3 +ca Cursor blink cycle count., System default=24,

4 + CQ Minor timing.

5 + C@ Major timing, Cursor speed scaler = minor timing +

256*major timing (if minor=0, it's really 256).
+ Ca@ O0=normal uppercase, 32=normal lowercase keyboard,

=7}

Al2-2 / MMSFORTH USERS MANUAL

MMS(FORTH) DATA:

n MMS
If n is:

Q0 =3 O Gl O N ~O

11
12
13
14

16
17
18
19
20
21
22
23

24

Array of system addresses.,

Addr of Inner Interpreter (NEXT).

Code Addr for Vocabularies.

Code Field Addr (CFA) of JMP.

CFA of JMP conditional (0 TOS causes JMP).

Addr of 16-bit comparison subroutine (HL minus DE).
Addr of 32/16-bit subroutine (HLDE pair div by BC
giving HL quotient and DE remainder.

Addr of 2's-complement subroutine (HL = work reg.).
Addr of double-2's-complement subr, (HLDE pair).

Addr of 16*16-bit subroutine (unsigned) (HL times DE
giving HIDE pair).

CFA of :

CFA of ;

Addr of ORIGIN sub-table.

Addr of DISK ROUTINE sub-table,

Addr of INITIALIZE sub-table,

Addr of REAL-TIME CLOCK sub-table,

Addr of disk start-up delay byte.

CFA of print string literal.

CFA of byte literal,

CFA of double word literal.

CFA of ;CODE.

Addr of DEFAULT SYSTEM VALUES sub-table,

Addr of CURRENT SYSTEM VALUES sub-table.

CFA of word literal.

CFA of routine which looks up a hash-coded name (on
the stack as a double number) and returns CFA of name
or zero,

CFA of hash-encoding routine (takes string addr of
name and leaves double number encoded name),

ORIGIN:
11 MMS

-] Ot W
+ 4+ +

DISK ROUTINE:

12 MMS

0 + Ca@
2 + CQ@

o oo

INITIALIZE:

13 MMS

[o <IN o~ N o\ R e}
+ 4+ 4+ +

Y Y EY

TRS-80 System Constants Tables / Al12-3

First memory location of Forth code and entry point to
MMSFORTH (on standard TRS-80 is 19200D, 4B00H),
Contains jump to system initialization.

Address of end of memory plus one.

Negative size of Return Stack.

Parameter Field Address (PFA) of Outer Interpreter
word which is executed at ABORT or QUIT,

Address of DISK ROUTINE values,

Early-Disable-Interrupt byte.
Disk number-of-tries-before-reject byte.

INITIALIZE TABLE of five addresses that are scanned
during ABORT/QUIT processing,
For each: =0 do nothing, #0 execute subroutine at that

address,

Unused.
Type-~ahead.
Future spooler.
Unused,
Unused.,

REAL-TIME CLOCK:

14 MMS

OO NN O
+ 4+ + + +

e

REAL-TIME CLOCK INTERRUPT TABLE of five
addresses that are scanned at each real-time interrupt.
For each: =0 do nothing, #0 executed subroutine at that
address,

Model 1 Real-time Clock (Unused on Model III).
Type-ahead.

Future Spooler,

Unused,

Unused,

Al2-4 / MMSFORTH USERS MANUAL

DEFAULT SYSTEM VALUES:

20 MMS

>N o
+

S oo®
+ + +

1

12
14
17
20

PO O 0

+ + + +

DEFAULT SYSTEM VALUES TABLE. When source is
recompiled, these values are copied into the
corresponding entries of 21 MMS.

Entry address of Full ASCII keyboard subroutine.
Entry address of Blinking Cursor keyboard subroutine.
Entry address of TRS-80 display output calling
subroutine.

CFA of Disk Block-Read word.

CFA of Disk Block-Write word.

CFA of word to output _ok & CR

(_ok: if compile state).

CFA of 79-STANDARD EXPECT word,

CFA of null word (default extend-interpreter word).
PFA of ABORT (default Break definition).

PFA of %CONT (or Screen-Print word when loaded).

CURRENT SYSTEM VALUES:

21 MMS
0 +
2 +
4 +
6 +
8 +
10 +
12 +
14 +
17 +
20 +
22 +
24 + CQ@
25 + C4@

o o 0 0D

CURRENT SYSTEM VALUES TABLE.
May be changed by the careful user.

Address of ?KEY driver subroutine (value in A), ?IN
Address of KEY driver subrtn (value in A)., IN-UNIT
Address of EMIT driver subrtn (value in A)., OUT-UNIT
CFA of Mass Storage Read routine (ERBLK).

CFA of Mass Storage Write routine (EWBLK).

CFA of prompt routine.

CFA of EXPECT execution word.

CFA of Extend-interpreter word (executed between
dictionary lookup and number conversion),

PFA of Break definition (must end in ABORT or
%CONT).

PFA of A-* (Screen-Print) definition (must end in
ABORT or %CONT).

Amount of memory to leave between top of dictionary
and stack, When actual memory available gets down to
this size a warning message is given.

Auto-Boot flag,

=0 - no automatic execution after copyright message.

#0 - after copyright message, execute Auto-command as
set with CUSTOMIZE.

Dup-name: flag.

=0 - no message when duplicate word name detected.

#0 - warning message is printed when duplicate word
name detected (default value),

10,

11,

Rules for MMSFORTH / A13-1

Table 12 - FORTH PROGRAMMING RULES
FORTH WORDS ARE COMPOSED OF UP TO 31 PRINTABLE
CHARACTERS, SEPARATED BY SPACES.

MOST WORDS REQUIRE PARAMETERS ON A PUSH-DOWN STACK,

THE BREAK KEY OR ANY ERROR MESSAGE EMPTIES BOTH
STACKS.

ALL PARAMETERS PUT ONTO A STACK MUST BE REMOVED WHEN
THEY ARE NO LONGER NEEDED. THE ORDER WILL BE LAST IN,
FIRST OUT.

ALL WORDS MUST BE DEFINED BEFORE THEY CAN BE USED.

COMPILING WORDS MUST NEVER BE USED OUTSIDE A
DEFINITION.

EVERY IF MUST BE FOLLOWED BY A THEN.

ANYTHING PUSHED ONTO THE RETURN STACK MUST BE
REMOVED WITHIN THE SAME DEFINITION.,

WHEN NESTING STRUCTURES IN FORTH, YOU MUST NEST EACH
STRUCTURE COMPLETELY WITHIN ANY OUTER STRUCTURE.

NEVER PUT AN UNTESTED ROUTINE INTO A LOOP.

A STUB MUST REPRODUCE THE BEHAVIOR OF ITS INTENDED
COUNTERPART WITH RESPECT TO STACK USAGE.

Bibliography / A14-1

A14.0 BIBLIOGRAPHY

Many Forth books are available now and more are expected in the near
future., Some other types of books are particularly valuable to advanced
users of MMSFORTH on the Radio Shack TRS-80 or IBM Personal Com-
puters, MMS recommends all of the following and stocks the ones showing
prices, :

MMSFORTH NEWSLETTER Each vol.: $10.00
(v, 1980; v.2, 1981-2; V.3, 1983-.) $30.00 for all.
By subseription to licensed MMSFORTH users, only.
Active users will want all 6-issue volumes!

STARTING FORTH (L. Brodie) $17.95
The best on learning Forth, Get it!

MMSFORTH USERS MANUAL $17.50
Non-user version of this manual (less Appendices).

BEGINNING FORTH (P. Chirlian) $16.95
About MMSFORTH V2,0 and V2.1, Detailed attention for
the beginning Forth user, inecluding MMSFORTH extension
wordsets.

INTRODUCTION TO FORTH (K. Knecht) $10.95
About MMSFORTH V1.9. Detailed attention for the begin-
ning Forth user who has Extended BASIC experience.

THE COMPLETE FORTH (A. Winfield) $15.95
A recommended book on 79-Standard Forth with good examples,

FORTH PROGRAMMING (L. Scanlon) $17.95
A good book on learning 79-Standard and fig-FORTH.,

UNDERSTANDING FORTH (J. Reymann) $2.95
A first, cursory overview, Worth its low price!

Special FORTH Issue of BYTE Magazine (Aug. 1980)
A collector's item for Forth users and beginners,

FORTH-79 STANDARD MANUAL $13.95
The official description of the 79-STANDARD subset of
Forth words,

FORTH-83 STANDARD MANUAL $14 .95
The official description of the 83-STANDARD subset of
Forth words.

Al4-2 / MMSFORTH USERS MANUAL

THREADED INTERPRETIVE LANGUAGES (R. Loeliger) $20.75
Advanced, excellent analysis of the internals of a MMS-
FORTH-like language. (How to build one!)

PROGRAM DESIGN AND CONSTRUCTION (D. Higgins) $16.00
Good introduction to structured programming.

AND SO FORTH (T. Huang) $25.00
With attention to inner workings and philosophy of Forth,

derived from the excellent workshops by Kim Harris,
Used in MMS courses,

1982 FORML PROCEEDINGS $25.00
44 presentations from the 1982 Forth Modification Lab-
oratory in Asilomar, CA, replete with many advanced
ideas -- and code -- for changes to Forth,

TRS-80 ASSEMBLY LANGUAGE (H. Howe, Jr.) $9.95
Good overview of Assembler and firmware considerations.

MICROSOFT BASIC DECODED & OTHER MYSTERIES $29.95

FOR TRS-80 (J. Farvour)
Excellent for use of TRS-80 Model 1 firmware, much of
it good for Model III, also.

MODEL III ROM COMMENTED (SSM Inc.)
Complete Model III listing to supplement the above.

THE 8086/8088 PRIMER (S. Morse) $11.95
Assembler and related information for the IBM Personal
Computer, by one of the designers of its CPU chip.

8086/8088 16-BIT MICROPROCESSOR PRIMER $16.95
(C. Morgan & M. Waite)
As above, better treatment of the 8087 "fast-math chip”.

INSIDE THE IBM PC (P. Norton) $19.95
Access to advanced features and programming.

All plus shipping/handling charges and Massachusetts tax, and subject
to change by MMS, publishers, the Postal Service, et al. Present shipping
costs are $2.00 minimum plus $1.00 per additional book, or plus 20% for
most overseas Air Mail, To avoid cost problems, use Visa, MasterCard,
UPS COD, or include an extra prepayment; MMS will return any over-
payment with your order,

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	mmspart2.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf

